

PRODUCT DESCRIPTION Aviat Networks WTM 3100 ALL OUTDOOR PACKET MICROWAVE RADIO SYSTEM

RELEASE 1.0

# WTM 3100 Product Description Copyright and Terms of Use

#### August 2012

This documentation incorporates features and functions provided with WTM 3100.

#### Copyright © 2012 by Aviat Networks, Inc.

All rights reserved. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, electronic, magnetic, optical, chemical, manual or otherwise, without the prior written permission of Aviat Networks Inc. To request permission, contact techpubs@aviatnet.com.

#### Warranty

Aviat Networks makes no representation or warranties with respect to the contents hereof and specifically disclaims any implied warranties or merchantability or fitness for any particular purpose. Further, Aviat Networks reserves the right to revise this publication and to make changes from time to time in the content hereof without obligation of Aviat Networks to notify any person of such revision or changes.

#### **Safety Recommendations**

The following safety recommendations must be considered to avoid injuries to persons and/or damage to the equipment:

1. Installation and Service Personnel: Installation and service must be carried out by authorized personnel who have the technical training and experience necessary to be aware of any hazardous operations during installation and service, and of measures to avoid any danger to themselves, to any other personnel, and to the equipment.

2. Access to the Equipment: Access to the equipment in use must be restricted to service personnel only.

3. Safety Norms: Recommended safety norms are detailed in the Health and Safety sections of this manual. Local safety regulations must be used if mandatory. Safety instructions in this document should be used in addition to the local safety regulations. In the case of conflict between safety instructions stated in this manual and those indicated in local regulations, mandatory local norms will prevail. Should local regulations not be mandatory, then the safety norms in Volume 1 will prevail.

4. Service Personnel Skill: Service personnel must have received adequate technical training on telecommunications and in particular on the equipment this manual refers to.

#### Trademarks

All trademarks are the property of their respective owners.

#### **Document Revision:**

001

#### SERVICE AND TECHNICAL SUPPORT

For sales information, contact one of the Aviat Networks headquarters, or find your regional sales office at http://www.aviatnetworks.com/.

| Corporate Headquarters         | International Headquarters         |
|--------------------------------|------------------------------------|
| California, USA                | Singapore                          |
| Aviat Networks, Inc.           | Aviat Networks (S) Pte. Ltd.       |
| 5200 Great American Parkway    | 17, Changi Business Park Central 1 |
| Santa Clara, California 95054  | Honeywell Building, #04-01         |
| U. S. A.                       | Singapore 486073                   |
| Phone: + 1 408 567 7000        | Phone: +65 6496 0900               |
| Fax: + 1 408 567 7001          | Fax: + 65 6496 0999                |
| Toll Free for Sales Inquiries: | Sales Inquiries:                   |
| + 1 888-478-9669               | +1-321-674-4252                    |

#### SALES AND SALES SUPPORT

For customer service and technical support, contact one of the regional Technical Help Desks listed below.

| Americas Technical Help<br>Desk                                                                  | EMEA Technical Help Desk                                                                                                                | Asia Pacific Technical Help<br>Desk                                                                                             |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Aviat Networks, Inc.<br>5200 Great American Parkway<br>Santa Clara, California 95054<br>U. S. A. | Aviat Networks<br>4 Bell Drive<br>Hamilton International<br>Technology Park<br>Blantyre, Glasgow, Scotland<br>G72 0FB<br>United Kingdom | Aviat Networks<br>Bldg 10, Units A&B<br>Philexcel Industrial Park<br>M. Roxas Hi-way<br>Clark Freeport Zone<br>Philippines 2023 |
| Phone: +1 210 561 7400<br>Toll-free in US:<br>+1 800 227 8332<br>Fax: +1 408 944 1683            | Hamilton: +44 (0) 16 98 717<br>230<br>Paris: + 33 (0) 1 77 31 00 33<br>Fax: +44 1698 717 204                                            | Phone: +63 45 599 5192<br>Fax: +63 45 599 5196                                                                                  |
| TAC.AM@aviatnet.com                                                                              | TAC.EMEA@aviatnet.com                                                                                                                   | TAC.APAC@aviatnet.com                                                                                                           |

Or you can contact your local Aviat Networks office. Contact information is available on our website at: http://www.aviatnetworks.com/services/customer-support/technical-assistance/

# WARNING

Making adjustments and/or modifications to this equipment that are not in accordance with the provisions of this instruction manual or other supplementary documentation may result in personal injury or damage to the equipment, and may void the equipment warranty.

# AVERTISSEMENT

Tout réglage ou modification faits à cet équipement hors du cadre édicté par ce guide d'utilisation ou par toute autre documentation supplémentaire pourraient causer des blessures ou endommager l'équipement et peut entraîner l'annulation de sa garantie.

# WARNUNG

Die an diesen Geräten gemachte Einstellungen und/oder Änderungen, welche nicht gemäß dieser Bedienungsanleitung, oder gemäß anderen zusätzlichen Anleitungen, ausgeführt werden, können Verletzungen oder Materialschäden zur Folge haben und eventuell die Garantie ungültig machen.

# ATENCIÓN

Llevar a cabo ajustamientos y/o modificaciones a este equipo, sin seguir las instrucciones provistas por este manual u otro documento adicional, podría resultar en lesiones a su persona o daños al equipo, y anular la garantía de este último.



不按该说明书有关条例或其它补充文件对该设备 所做的调整和 / 或改型可能会引起人身伤害 或损坏设备,并且设备保修也将失效。

# DECLARATION OF CONFORMITY, R&TTE DIRECTIVE, 1999/5/EC

| Czech Republic                           | Aviat Networks tímto prohlašuje, že tento WTM 3100 je ve shodě se základními požadavky a dalšími příslušnými ustanoveními směrnice 1999/5/ES.                                                              |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Denmark                                  | Undertegnede, Aviat Networks erklærer herved, at følgende<br>udstyr WTM 3100 overholder de væsentlige krav og øvrige<br>relevante krav i direktiv 1999/5/EF.                                               |
| Germany Austria<br>Switzerland Belgium   | Hiermit erklärt, Aviat Networks dass sich das Gerät WTM<br>3100 in Übereinstimmung mit den grundlegenden<br>Anforderungen und den übrigen einschlägigen Bestimmungen<br>der Richtlinie 1999/5/EG befindet. |
| Luxembourg Netherlands<br>Liechtenstein  |                                                                                                                                                                                                            |
| Estonia                                  | Käesolevaga kinnitab , Aviat Networks seadme WTM 3100<br>vastavust direktiivi 1999/5/EÜ põhinõuetele ja nimetatud<br>direktiivist tulenevatele teistele asjakohastele sätetele.                            |
| United Kingdom Ireland<br>Malta          | Hereby, Aviat Networks declares that WTM 3100 is in compliance with the essential requirements and other relevant provisions of Directive 1999/5/EC.                                                       |
| Spain                                    | Por medio de la presente Aviat Networks declara que el WTM 3100 cumple con los requisitos esenciales y cualesquiera otras disposiciones aplicables o exigibles de la Directiva 1999/5/CE.                  |
| Greece Cyprus                            | ΜΕ ΤΗΝ ΠΑΡΟΥΣΑ, Aviat Networks ΔΗΛΩΝΕΙ ΟΤΙ WTM<br>3100 ΣΥΜΜΟΡΦΩΝΕΤΑΙ ΠΡΟΣ ΤΙΣ ΟΥΣΙΩΔΕΙΣ<br>ΑΠΑΙΤΗΣΕΙΣ ΚΑΙ ΤΙΣ ΛΟΙΠΕΣ ΣΧΕΤΙΚΕΣ ΔΙΑΤΑΞΕΙΣ ΤΗΣ<br>ΟΔΗΓΙΑΣ 1999/5/ΕΚ.                                          |
| France Luxembourg<br>Switzerland Belgium | Par la présente, Aviat Networks déclare que l'appareil WTM 3100 est conforme aux exigences essentielles et aux autres dispositions pertinentes de la directive 1999/5/CE.                                  |
| Italy Switzerland                        | Con la presente , Aviat Networks dichiara che questo WTM<br>3100 è conforme ai requisiti essenziali ed alle altre disposizioni<br>pertinenti stabilite dalla direttiva 1999/5/CE.                          |
| Latvia                                   | Ar šo Aviat Networks deklarē, ka WTM 3100 atbilst Direktīvas<br>1999/5/EK būtiskajām prasībām un citiem ar to saistītajiem<br>noteikumiem,                                                                 |
| Lithuania                                | Šiuo Aviat Networks deklaruoja, kad šis WTM 3100 atitinka<br>esminius reikalavimus ir kitas 1999/5/EB Direktyvos nuostatas.                                                                                |
| Netherlands Belgium                      | Hierbij verklaart , Aviat Networks dat het toestel WTM 3100 in<br>overeenstemming is met de essentiële eisen en de andere<br>relevante bepalingen van richtlijn 1999/5/EG.                                 |
| Malta                                    | Hawnhekk, Aviat Networks, jiddikjara li dan WTM 3100<br>jikkonforma mal-ħtiġijiet essenzjali u ma provvedimenti oħrajn<br>relevanti li hemm fid-Dirrettiva 1999/5/EC.                                      |

| Hungary  | Alulírott, , Aviat Networks nyilatkozom, hogy a WTM 3100<br>megfelel a vonatkozó alapvető követelményeknek és az<br>1999/5/EC irányelv egyéb előírásainak.                                                                                                  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Poland   | Niniejszym Aviat Networks oświadcza, że WTM 3100 jest<br>zgodny z zasadniczymi wymogami oraz pozostałymi<br>stosownymi postanowieniami Dyrektywy 1999/5/EC                                                                                                  |
| Portugal | Aviat Networks declara que este WTM 3100 está conforme<br>com os requisitos essenciais e outras disposições da Directiva<br>1999/5/CE.                                                                                                                      |
| Slovenia | Aviat Networks izjavlja, da je ta WTM 3100 v skladu z<br>bistvenimi zahtevami in ostalimi relevantnimi določili direktive<br>1999/5/ES.                                                                                                                     |
| Slovakia | Aviat Networks týmto vyhlasuje, že WTM 3100 spĺňa základné požiadavky a všetky príslušné ustanovenia Smernice 1999/5/ES.                                                                                                                                    |
| Finland  | Aviat Networks vakuuttaa täten että WTM 3100 tyyppinen laite<br>on direktiivin 1999/5/EY oleellisten vaatimusten ja sitä<br>koskevien direktiivin muiden ehtojen mukainen.                                                                                  |
| Sweden   | Härmed intygar Aviat Networks att denna WTM 3100 står I<br>överensstämmelse med de väsentliga egenskapskrav och<br>övriga relevanta bestämmelser som framgår av direktiv<br>1999/5/EG.                                                                      |
| Iceland  | Hér með lýsir Aviat Networks yfir því að WTM 3100 er í samræmi við grunnkröfur og aðrar kröfur, sem gerðar eru í tilskipun 1999/5/EC.                                                                                                                       |
| Norway   | Aviat Networks erklærer herved at utstyret WTM 3100 er i<br>samsvar med de grunnleggende krav og øvrige relevante krav<br>i direktiv 1999/5/EF.                                                                                                             |
| România  | Noi, Aviat Networks, declarăm pe propria noastră răspundere<br>că produsul WTM 3100 este în conformitate cu cerințele<br>esențiale și celelalte prevederi aplicabile ale Hotărârii<br>Guvernului nr.88/2003 (R&TTE) sau ale Directivei 1999/5/EC<br>(R&TTE) |

€€

### INTENDED USE

The WTM 3100 radio is classified under the R&TTE Directive 99/5/EC as a class 2.8 radio (microwave fixed link) product.

| Band (GHz)  | Austria | Belgium | Bulgaria | Cyprus | Czech<br>Renuhlic | Denmark | Estonia | Finland | France | Germany | Greece | Hungary | lceland | Ireland | Italy | Latvia | Lithuania | Luxembour<br>a | Malta | Netherland<br>s | Norway | Poland | Portugal | Romania | Slovak<br>Renuhlic | Slovenia | Spain | Sweden | Switzerland | United<br>Kinadom |
|-------------|---------|---------|----------|--------|-------------------|---------|---------|---------|--------|---------|--------|---------|---------|---------|-------|--------|-----------|----------------|-------|-----------------|--------|--------|----------|---------|--------------------|----------|-------|--------|-------------|-------------------|
| 07          | Х       | Х       | Х        | Х      | Х                 | Х       | Х       | Х       | Х      | Х       | Х      | Х       | Х       | Х       | Х     | Х      | X         | Х              | Х     | X               | Х      | Х      | Х        | Х       | Х                  | X        |       | Х      | X           | Х                 |
| 13          | Х       | X       | X        | Х      | X                 | X       | Х       | X       | Х      | Х       | Х      | Х       | Х       | Х       | Х     | Х      | X         | Х              | Х     | Х               | X      | Х      | Х        | Х       | Х                  | Х        | Х     | Х      | X           | Х                 |
| 15          | Х       | X       |          | X      | X                 | Х       | Х       | X       | X      | Х       | Х      | Х       | Х       | Х       | Х     | Х      | X         | Х              | Х     | X               | X      | Х      | Х        | Х       | Х                  | X        | Х     | X      | X           | Х                 |
| 18          | Х       | X       | X        | X      | X                 | Х       | Х       | X       | X      | X       | Х      | Х       | Х       | Х       | Х     | Х      | X         | Х              | Х     | X               | X      | Х      | Х        | Х       | Х                  | X        | Х     | X      | X           | Х                 |
| 23          | Х       | X       | X        | Х      | Х                 | Х       | Х       | Х       | X      | Х       | Х      | Х       | Х       | Х       | Х     | Х      | Х         | Х              | Х     | Х               | X      | Х      | Х        | Х       | Х                  | Х        | Х     | X      | X           | Х                 |
| 38<br>Tabla | Х       | X       | X        | Х      | X                 | X       | X       | X       | X      | X       | Х      | Х       | Х       | Х       | Х     | X      | X         | X              | X     | X               | X      | X      | Х        | Х       | X                  | X        | Х     | X      | X           | Х                 |

Table 1-1; Country Availability Matrix

Aviat Networks intends to market this product where a 'X' is shown.

It should be noted that a license to operate this equipment is likely to be necessary, and the appropriate regulatory administration should be contacted.

,6lp

### RF EXPOSURE GUIDELINES FOR WTM 3100

The following MPE (maximum permissible exposure) calculations have been produced in accordance with the guidelines of EN 50383/EN 50385. These calculations represent the maximum conducted output power and the maximum antenna gain, by frequency range. These calculations are based on the exposure requirements for the general public.

| Frequency Range                   | Minimum Compliance<br>distance (meters) | TX conducted power | Antenna<br>Gain |
|-----------------------------------|-----------------------------------------|--------------------|-----------------|
| 7.125 – 7.9 GHz + 7.725 – 8.5 GHz | 6.03 m                                  | +25.5 dBm          | 41.1 dBi        |
| 12.75 – 13.25 GHz                 | 8.42 m                                  | +24.0 dBm          | 45.5 dBi        |
| 14.4 – 15.35 GHz                  | 9.45 m                                  | +24.0 dBm          | 46.5 dBi        |
| 17.7 – 19.7 GHz                   | 7.0 m                                   | +19.5 dBm          | 48.4 dBi        |
| 21.2 - 23.632 GHz                 | 8.32 m                                  | +19.5 dBm          | 49.9 dBi        |
| 37.0 – 39.46 GHz                  | 4.12 m                                  | +17.5 dBm          | 45.8 dBi        |

Table 2: WTM 3100 Maximum Permissible Exposure Values

# WEEE DIRECTIVE

In accordance with the WEEE Directive (2002/96/EC), WTM 3100 is marked with the following symbol:



This symbol indicates that this equipment should be collected separately for the purposes of recovery and/or recycling.

For information about collection and recycling of Aviat Networks equipment please contact your local Aviat Networks sales office. If you purchased your product via a distributor please contact the distributor for information regarding collection and recovery/recycling.

More information on the WEEE Directive is available at our website:

http://www.aviatnetworks.com/products/compliance/weee/

(WEEE is the acronym for Waste Electrical and Electronic Equipment)

#### ROHS DIRECTIVE

The RoHS (Restriction of Hazardous Substances) Directive (2002/95/EC) was implemented on 1 July, 2006. WTM 3100 meets the requirements of this directive.

# CONTENTS

| SERVICE AND TECHNICAL SUPPORT                                         | iii            |
|-----------------------------------------------------------------------|----------------|
| SALES AND SALES SUPPORT                                               | iii            |
| DECLARATION OF CONFORMITY, R&TTE DIRECTIVE, 1999/5/EC                 | v              |
| RF EXPOSURE GUIDELINES FOR WTM 3100                                   | 8              |
| WEEE DIRECTIVE                                                        | 8              |
| ROHS DIRECTIVE                                                        | 8              |
| CONTENTS                                                              | 9              |
| 1. INTRODUCTION                                                       | 12             |
| 2. SYSTEM DESCRIPTION                                                 | 13             |
| 2.1. EQUIPMENT ARCHITECTURE                                           | 15             |
| 2.1.1. GENERAL SYSTEM BLOCK DIAGRAM                                   | 15             |
| 2.1.2. MODEM CHARACTERISTICS                                          | 16             |
| 2.1.3. POWERING OPTIONS                                               | 16             |
| 2.1.4. ETHERNET CABLE                                                 | 17             |
| 2.1.5. PROTECTION CABLE                                               | 18             |
| 2.2. SYSTEM CONFIGURATIONS                                            | 18             |
| 2.2.1. 1+0 NON PROTECTED LINK CONFIGURATION WITH POE                  | 18             |
| 2.2.2. 1+0 NON PROTECTED LINK CONFIGURATION WITH DIRECT -48 VDC POWER | 19             |
| 2.2.3. 1+1 HSB PROTECTED LINK CONFIGURATION WITH POE                  | 20             |
| 2.2.4. 1+1 HSB PROTECTED LINK CONFIGURATION WITH DIRECT -48 VDC POWER | 20             |
| 2.3. RADIO TRANSMISSION; FREQUENCY, BANDWIDTH & TRANSMIT POW          | /ER21          |
| 2.3.1. FREQUENCY AGILITY                                              | 21             |
| 2.3.2. BANDWIDTH AGILITY                                              | 21             |
| 2.3.3. TRANSMIT POWER CONTROL; STATIC (RTPC) AND AUTOMATIC (ATPC)     | 22             |
| 2.3.4. MODULATION AND ADAPTIVE MODULATION                             | 22             |
| 2.4. ETHERNET AND PAYLOAD FEATURES                                    | 23             |
| 2.4.1. ETHERNET SERVICES                                              | 23             |
| 2.4.2. QUALITY OF SERVICE                                             | 23             |
| 2.4.3. MANAGEMENT TRAFIC PRIORITIZATION                               | 24             |
| 2.5. EQUIPMENT CONTROL AND MANAGEMENT                                 | 24             |
| 2.5.1. MANAGEMENT INTERFACES                                          | 24             |
| 9 AVIAT NETWORKS                                                      | September 2012 |

260-668220-001

|    | 2.5.2. | SYSTEM MANAGEMENT BY EPORTAL                             | 24 |
|----|--------|----------------------------------------------------------|----|
|    | 2.5.3. | SYSTEM MANAGEMENT BY PROVISION NMS                       | 25 |
|    | 2.5.4. | ALARMS AND MONITORING                                    | 25 |
|    | 2.6.   | SYNCHRONOUS ETHERNET (SYNC-E) FEATURES                   | 26 |
|    | 2.6.1. | ODR CLOCK TRANSPARENCY WITH POE INJECTOR OPERATING AS GE | 27 |
|    | 2.6.2. | ODR CLOCK TRANSPARENCY WITH POE INJECTOR OPERATING AS FE | 27 |
|    | 2.6.3. | CLOCK SPECIFICATIONS                                     |    |
|    | 2.6.4. | SYNC-E ALARMS AND MONITORING                             | 28 |
|    | 2.6.5. | SSM MANAGEMENT                                           | 29 |
|    | 2.7.   | IEEE 1588 - LIMITED SUPPORT                              | 29 |
| 3. | Р      | HYSICAL COMPOSITION AND CONFIGURATIONS                   | 30 |
|    | 3.1.   | SOLUTION ELEMENTS                                        |    |
|    | 3.2.   | ODR EXTERNAL INTERFACES                                  | 31 |
|    | 3.3.   | MECHANICAL CHARACTERISTICS                               | 37 |
|    | 3.4.   | PRODUCT LABELING AND IDENTIFICATION                      | 37 |
| 4. | Т      | ECHNICAL SPECIFICATIONS - ODR - ETSI                     | 40 |
|    | 4.1.   | GENERAL                                                  | 40 |
|    | 4.2.   | TRANSMITER                                               | 42 |
|    | 4.3.   | RECEIVER                                                 | 44 |
|    | 4.4.   | PROTECTION LOSSES                                        | 45 |
|    | 4.5.   | CARRIER ETHERNET & IP SPECIFICATIONS                     | 46 |
|    | 4.5.1. | DISPERSIVE FADE MARGIN (DFM)                             | 47 |
|    | 4.6.   | PAYLOAD CHARACTERISTICS                                  | 48 |
|    | 4.6.1. | LATENCY                                                  | 49 |
|    | 4.7.   | SUPPORTED CHANNEL SPACINGS AND MODULATIONS               | 49 |
|    | 4.8.   | SYSTEM GAIN                                              | 50 |
|    | 4.9.   | CHANNEL INTERFERENCE THRESHOLDS                          | 51 |
|    | 4.10.  | SUPORTED RADIO CHANNEL CONFIGURATIONS                    | 55 |
| 5. | т      | ECHNICAL SPECIFICATIONS - ACCESSORIES                    | 55 |
|    | 5.1.   | POE INJECTORS                                            | 55 |
|    | 5.2.   | ETHERNET CABLE (FROM ODR TO POE INJECTOR -ECD)           | 56 |
|    |        | ANTENNA                                                  |    |
| 6. | D      | OCUMENTATION AND SUPPORTING TOOLS                        | 59 |



|    | 6.1. | CUSTOMER DOCUMENTATION | 59 |
|----|------|------------------------|----|
|    | 6.2. | RELATED WHITE PAPERS   | 60 |
| 7. |      | MAINTENANCE            | 61 |
| 8. |      | GLOSSARY               | 62 |

# 1. INTRODUCTION

This document provides technical information about the WTM 3100. Use this document as a reference for information about the WTM 3100, and with the *WTM 3100 User Manual* for installation, commissioning and maintenance.

This document provides the following information:

- System description with reference to hardware and software implementation
- Physical composition and configurations
- ETSI compliant technical specifications
- Documentation and supporting tools
- Maintenance

Aviat Networks is ISO90001:2008 and TL9000 Certified. Full certification means all departments and business units within Aviat Networks have been strictly assessed for compliance to both standards. It testifies that Aviat Networks is a certified supplier of products, services and solutions to the highest ISO and Telecommunication standards available.

This document and its content apply to the following products and SW versions of the WTM 3100 product line.

| Product Line | Model Number | Comment                    |
|--------------|--------------|----------------------------|
| WTM 3100     | W3100-07     | WTM 3100, 07 GHz, Terminal |
|              | W3100-13     | WTM 3100, 13 GHz, Terminal |
|              | W3100-15     | WTM 3100, 15 GHz, Terminal |
|              | W3100-18     | WTM 3100, 18 GHz, Terminal |
|              | W3100-23     | WTM 3100, 23 GHz, Terminal |
|              | W3100-38     | WTM 3100, 38 GHz, Terminal |

#### Table 1-1; WTM 3100 Product models

| Title                        | Part Number   | Comment                                  |  |  |  |  |  |  |  |
|------------------------------|---------------|------------------------------------------|--|--|--|--|--|--|--|
| 1.0.1 SW version             | W3100-SWP-1-0 | WTM 3100 Software package, version 1.0.1 |  |  |  |  |  |  |  |
| Table 1.2: WTM 2100 releases |               |                                          |  |  |  |  |  |  |  |

Table 1-2: WTM 3100 releases



# 2. SYSTEM DESCRIPTION

The Aviat Networks WTM 3100 is an all outdoor packet-microwave radio operating in licensed frequency bands from 7 to 38 GHz with channel sizes from 7 to 56 MHz. Suitable for connecting locations up to ~50km apart, the WTM 3100 will deliver up to 360 Mbit/s of Ethernet capacity on a single port. It is designed to meet Carrier Ethernet transport requirements and provides operators with an economic solution for basic microwave networking applications.



Figure 2-1; WTM 3100 housing, top

#### Simple Design, Simple Deployment

Deployment of the WTM 3100 is straightforward and time-efficient. The combined benefits of an integrated antenna mount, easy access connectors (ports) and a user friendly browser-based configuration tool (ePortal) means the WTM 3100 can be deployed rapidly for new sites in your network, especially sites with severe space restrictions.

#### **Ethernet Interoperability and Operation**

The WTM 3100 can be deployed in a variety of Ethernet or Carrier Ethernet applications to connect packet switches, routers or specialized IP enabled platforms such as 4G mobile RAN. It operates as a transparent Ethernet bridge and can be deployed in chain, ring, star or mesh topologies.

The WTM 3100 also provides operators with a clear demarcation between the Ethernet transport (microwave) and the switching layer of the network, enabling rapid fault isolation and optimizing the mean time to repair (MTTR).

#### **Networks and Applications**

The WTM 3100 complements Aviat Network's all-indoor and split-mount microwave networking portfolio.

It provides an optimized solution for operators that face the challenge of extending their networks to increasingly small all-outdoor sites in order to serve the growing demand for IP-based applications and services. Deployment scenarios for the WTM 3100 include:

- Mobile RAN networks: Backhaul for access sites with 3/4G base-stations
- Rural and urban xDSL networks: High capacity connections to micro exchanges
- Fixed line access networks: Broadband connections for enterprise customers
- Electric SmartGrid networks: Sub-station interconnect
- Public safety and security networks: Backhaul for land mobile radio (e.g. Tetra or P.25)
- Oil and gas networks: High capacity connections to field and pipeline infrastructure

### Lowering the Total Cost of Ownership

Aviat Networks has a long established track record of delivering high quality products empowering operators to optimize their capital and operational costs. The WTM 3100 builds on this heritage, providing operators with an exceptionally good value entry level packet-microwave networking solution.

### **Key Features**

- All outdoor zero footprint packet-microwave solution for space restricted sites
- Antenna integration options: Direct Mount (Slip Fit) up to 1.8 m and Remote Mount using flex/fixed waveguide
- Single-port Carrier Ethernet transport, delivering up to 360 Mbit/s throughput per link (symmetrical) with QoS and synchronous Ethernet support
- Operates in licensed frequencies from 7 GHz to 38 GHz and with ETSI channels ranging from 7 MHz to 56 MHz
- Full range of adaptive modulation steps from 4 QAM to 256 QAM for optimal link design and antenna sizing
- Link configurations: Point to point only, Non protected (1+0, NP) and Protected hot standby (1+1 HSB)
- High quality environmentally hardened (IP65) outdoor enclosure with ePortal local/remote access for configuration and maintenance support
- Full integration with ProVision EMS for terminal, link and network level management
- Power options include PoE injectors (110/220 AC, -48 VDC and -24 VDC) for single cable deployment and direct -48 VDC power for dual cable deployment
- Topologies supported: chain, star, ring and mesh



# 2.1. EQUIPMENT ARCHITECTURE

# 2.1.1. GENERAL SYSTEM BLOCK DIAGRAM

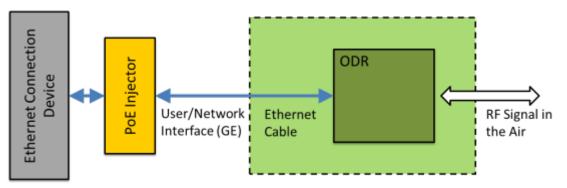



Figure 2-2; WTM 3100 System Configuration, powered over PoE injector

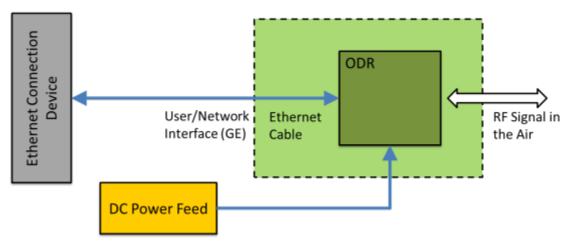



Figure 2-3; WTM 3100 System Configuration, powered over -48 VDC power feed

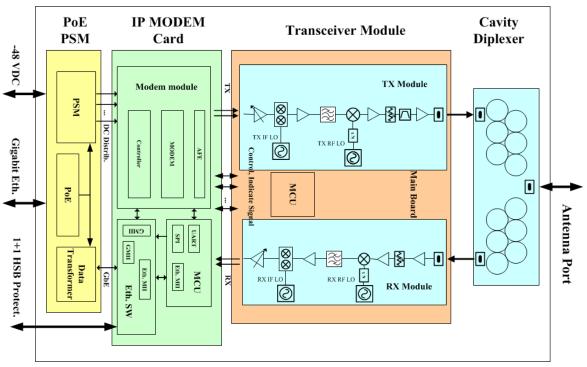



Figure 2-4: WTM 3100 Block Diagram

The WTM 3100 ODR consists of the following blocks: DC module, modem card, transceiver module and diplexer. Each module serves specific functions. DC module supplies DC voltage and current for all other modules. The modem transforms Ethernet packets to baseband signals which are modulated in the range from 4 QAM to 256 QAM. The transceiver works with different frequency bands. It combines baseband signal and local oscillation signal with carrier frequencies from 7 GHz to 38 GHz. The diplexer separately connects the transmitted and received signals between transceiver and antenna.

# 2.1.2. MODEM CHARACTERISTICS

The modem supports LDPC (Low Density Parity Check) coding and ACM function.

Various modulation schemes (4 QAM, 16 QAM, 64 QAM, 128 QAM, 256 QAM) and selectable bandwidth options (7 MHz, 14 MHz, 28 MHz, 56 MHz) provide choices of different throughput options for multiple types of network configurations.

### 2.1.3. POWERING OPTIONS

Two options are available for powering the unit. The first one is powering with a PoE injector. The PoE injector injects the DC power into the Ethernet cable. The second option uses the Direct -48 VDC power interface to power the ODR.



#### **PoE injector**

The WTM 3100 operates with an external PoE injector, which injects the DC power into an Ethernet cable and delivers it to the ODR. If this option used, the WTM 3100 is powered by an external PoE injector. The DC power is injected into the Ethernet cable and delivered to the ODR. The PoE injector provides both data and power over a single cable. The ODR therefore does not require a separate DC power cable.

PoE injector provides both data connection and power supply over a single cable. The ODR does not require separate cabling.

Following PoE injector options are supported:

- 110~220 VAC POE; fully supported, works with up to 100 meters Ethernet cable
- -48 VDC POE; fully supported, works with up to 100 meters Ethernet cable
- 24 VDC (18~36 VDC) POE; limited support, works with up to 80 meters Ethernet cable dou to high bit error rate.

The PoE injector enables DC power to be injected safely per IEE802.3at standard including PSE (power source equipment) and PD (powered device) components. PoE injector(PSE) has detection circuitry to poll if the remote ODR (PD) had well connected at initial powering stage and then decide to deliver DC power or not. After powering ODR, PoE injector (PSE) starts to monitor if over-current situation occurs and then starts protection process.

#### Direct -48 VDC Power Feed

N-type female interface on the ODR is used to connect -48 VDC power source and to power the ODR.

The input DC voltage range is from -37 VDC to -57 VDC. The DC voltage is supplied to use the coaxial cable with N-type connector. The benefit of deploying this powering option is that the user doesn't need to acquire an extra PoE injector. This results in reduced deployment cost.

Note: Powering the ODR over the DC connector does not provide current protection, so external current protection is needed at the power supply side.

Warning: When the Direct - 48 VDC power interface is used, do not short any of the Ethernet connection to an external ground. Otherwise it may cause damage to the ODR.

For more details about technical specification refer to chapter 5.1.

### 2.1.4. ETHERNET CABLE

A ruggedized outdoor Ethernet cable is used to connect Ethernet connection devices (ECD) with the WTM 3100. Cable types can be Mdi (Straight) or MdiX (Crossover) Category 5e. The cable with

RJ45 connector is connected at ODR side to the 10/100/1000 Base-TX port and at IDU side to the POE injector or to ECD directly when ODR is powered over Direct -48 VDC power feed.

Cable type:

- S/FTP Cat5e RJ45 cable, Belden 7921A or equivalent
- Operation temperature: 40 ~ +75 °C

Also, higher category outdoor cables (Cat6) can be used.

For more details about technical specification refer to chapter 5.2.

#### 2.1.5. PROTECTION CABLE

The 1+1 HSB protection connection between two paired units is enabled with a specially wired Ethernet cable.

The cable type is:

- S/FTP Cat5e RJ45 cable, Belden 7921A or equivalent
- Operation temperature: 40 ~ +75 °C

Cable wiring for 1+1 HSB Protection cable is as follows:

|                                                                                                                 | Pin | RJ45 Shielded<br>Connector A | RJ45 Shielded<br>Connector B |
|-----------------------------------------------------------------------------------------------------------------|-----|------------------------------|------------------------------|
|                                                                                                                 | 1   | white/orange stripe          | white/green stripe           |
| 67.9                                                                                                            | 2   | orange solid                 | green solid                  |
| A state -                                                                                                       | 3   | white/green stripe           | white/orange stripe          |
| W.                                                                                                              | 4   | blue solid                   | white/brown stripe           |
| The second se | 5   | white/blue stripe            | brown solid                  |
|                                                                                                                 | 6   | green solid                  | orange solid                 |
|                                                                                                                 | 7   | white/brown stripe           | blue solid                   |
|                                                                                                                 | 8   | brown solid                  | white/blue stripe            |
| GND 87654321                                                                                                    | 9   | GND                          | GND                          |

Figure 2-5: Protection Cable Wiring Specification

#### 2.2. SYSTEM CONFIGURATIONS

### 2.2.1. 1+0 NON PROTECTED LINK CONFIGURATION WITH POE

An example of WTM 3100 1+0 NPL deployment with POE injector is shown below. A simple, one cable connection of ODR and PoE injector is used to deploy data link between two remote locations.






Figure 2-6: 1+0 Non Protected Configuration with PoE injector powering

### 2.2.2. 1+0 NON PROTECTED LINK CONFIGURATION WITH DIRECT -48 VDC POWER

An example of WTM 3100 1+0 NPL deployment with direct -48 VDC powering is shown below. Dual cable deployment is used, a simple connection of ODR and ECD and connection between -48 VDC.

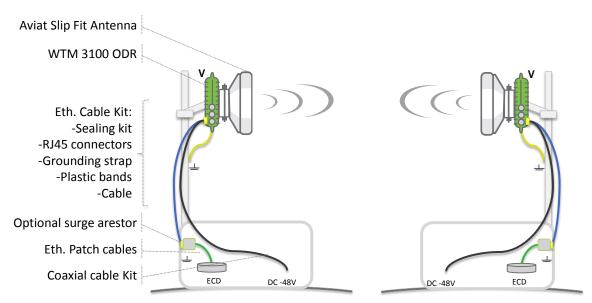
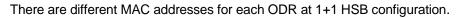



Figure 2-7: 1+0 Non Protected Configuration with direct -48 VDC powering

# 2.2.3. 1+1 HSB PROTECTED LINK CONFIGURATION WITH POE

WTM 3100 ODR can be deployed as 1+1 hot standby (1+1 HSB) protected link with powering over POE injector.


At this configuration, the upper left and lower left ODRs are paired as well as upper right and lower right ODRs, refer to Figure 2-8.

In a normal situation, one ODR (active unit) is responsible for transmitting data. Meanwhile, the other paired unit, named as standby unit, constantly monitors the performance of the active unit and replaces the role of transmitting data if an alarm occurs on the active unit.

ODR will turn off the Tx transmission when in stand-by mode. The protection cable will send a control signal to switch the operation mode between the protected ODR after the Microcontroller Unit (MCU) receives a severe alarm message (i.e. PA alarm, Synthesizer unlock alarm or Air frame loss alarm).

No special protocols need to be enabled on the relevant Ethernet ports of the ECD. As soon as a protection switch happens, the indoor ECD will update its forwarding table to pass on frames on the alternate port. Interworking with RTPC is also possible.

For carrier Ethernet networks, the G.8031 ELPS protocol can be enabled on the ECD. Only the unidirectional switching mode, that doesn't require the APS channel, can be enabled because the protection transport entity is not always available.





#### Figure 2-8: 1+1 HSB Protected Link Configuration with POE injector powering

2.2.4. 1+1 HSB PROTECTED LINK CONFIGURATION WITH DIRECT -48 VDC POWER WTM 3100 ODR can be deployed as 1+1 hot standby (1+1 HSB) protected link, directly powered over -48 VDC.



This configuration requires 4 cables at each side of the link. For more details about the operation refer to previous section, 2.2.3.

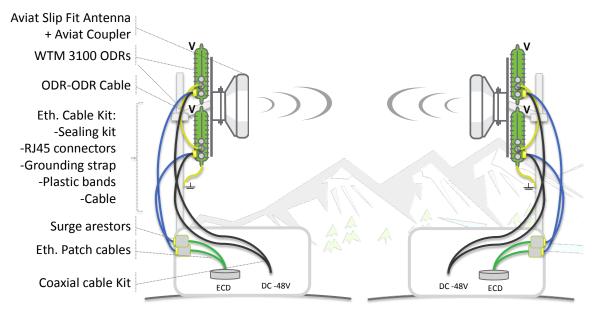



Figure 2-9: 1+1 HSB Protected Link Configuration with direct DC powering

### 2.3. RADIO TRANSMISSION; FREQUENCY, BANDWIDTH & TRANSMIT POWER

### 2.3.1. FREQUENCY AGILITY

WTM 3100 offers several frequency options from 7 to 38 GHz regulated by ETSI. A user can manually configure transmitting frequency and automatically configure the received frequency. Detailed Frequency band, range, and T-R spacing are listed in the WTM 3100 Tuning Guide.

The operating RF channel (transmitter and receiver frequency) is selected in ePortal. The step size is 250 kHz at all freq. bands.

Tx and Rx frequencies are linked by the T-R spacing value. Any change of Tx (Rx) frequency automatically involves the change of Rx (Tx) frequency according to the ODR T-R spacing, which is uniquely defined by the hardware product code of the unit. The end user can select the channel frequency (in MHz), of the Tx. The independent setting of Tx and Rx frequencies is not possible.

### 2.3.2. BANDWIDTH AGILITY

The radio channel bandwidth (Channel Spacing) can be set using the Radio Interface window of the ePortal at the following values: 7 MHz, 14 MHz, 28 MHz, 56 MHz (ETSI setting).

The performances of the system at each Channel Spacing are detailed in Section 4.6.

# 2.3.3. TRANSMIT POWER CONTROL; STATIC (RTPC) AND AUTOMATIC (ATPC)

Transmit power can be manually set in steps of 0.5 dB. A user configures the transmit power using either ePortal or ProVision. User can configure the remote unit through air channel to configure a suitable received power level. Furthermore, WTM 3100 also provides automatic transmit power control (ATPC). With the enabled ATPC function, the WTM 3100 automatically configures the transmitted power of each ODR to a specific level which is determined by the given margin value. Thus, each ODR always operates within an adequate received power level.

# 2.3.4. MODULATION AND ADAPTIVE MODULATION

WTM 3100 uses multiple modulations and channel capacity options. Lower modulations are able to withstand more difficult path conditions. User can manually configure the modulation by ePortal or ProVision at either local or remote site. WTM 3100 also provides the Adaptive Coding and Modulation (ACM) feature, which automatically changes the modulation according to the received signal quality.

ACM enables the changes of coding rate and modulation in real time according to the link conditions. This feature results in a significantly increased payload capacity and increased link availability. When the link SNR is sufficient, operation of all applications at full capacity is enabled. In case the link SNR drops significantly, the link capacity is reduced.

When this function is in use and the modulation switched to low modulation scheme, the QoS function drops lower priority throughput but still keeps higher priority throughput without change.

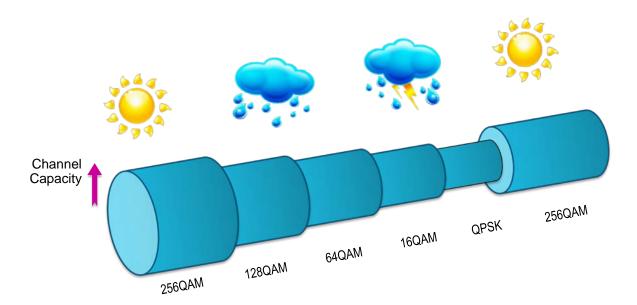
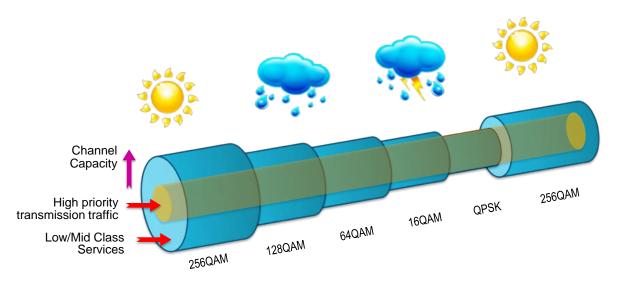



Figure 2-10; Supported Modulations



# 2.4. ETHERNET AND PAYLOAD FEATURES

#### 2.4.1. ETHERNET SERVICES


As an IP-based radio which transmits data in packet form, WTM 3100 provides several Ethernet features: QoS, Sync-E, IEEE PTP 1588 (Limited support) and SNTP. The capacity of each bandwidth and modulation matrix is listed in section 4.6. WTM 3100 can transmit the data with air link speed up to 360 Mbit/s and 274 Mbit/s at L1 Ethernet throughput and 64 bytes packets.

### 2.4.2. QUALITY OF SERVICE

WTM 3100 provides four types of QoS mechanisms:

- 4x Strict Priority (SP)
- SP + 3x Weighted Round Robin (WRR)
- 2x SP + 2x WRR
- 4x WRR

When operating in the adaptive modulation mode, the QoS mechanism minimizes traffic loss and delays for the error-free high priority transmission traffic. Different mechanisms allow the user a more flexible configuration.



#### Figure 2-11: Adaptive Modulation as QoS Ensuring Mechanism

WTM 3100 provides a queue controller to enable advanced non-blocking, priority-based, output queue architecture with Resource Reservation. As a result, the embedded Ethernet switch supports definable frame latencies with guaranteed frame delivery for high priority frames. It helps avoiding the head-of-line blocking problems or non-blocked flow disturbances in any congested environment and for all frame priorities.

Four QoS policies are supported: "4SP", "1SP+3DWRR", "2SP+2DWRR" and "4DWRR to set the scheduling. To activate a different policy, user has to enable different queues to implement the QoS policy. Additionally, for some policies with DWRR, user can set the queue weight as follows.

• 4SP

For this policy, in QoS ePortal pages user should use queues 0, 1, 2 and 3 in QoS.

- 1SP+3DWRR
   For this policy, in QoS ePortal pages user should use queue 0, 1, 2 and 7 and set weight for DWRR at queue 0, 1 and 2.
- 2SP+2DWRR For this policy, in QoS ePortal pages, user should use queue 0, 1, 6 and 7 and set weight for DWRR at queue 0 and 1.
- 4DWRR

For this policy, in QoS ePortal pages, user should use queues 0, 1, 2 and 3 and set weight for DWRR at queue 0, 1, 2 and 3.

# 2.4.3. MANAGEMENT TRAFIC PRIORITIZATION

A dedicated VLAN with highest priority can be assigned to the Management traffic. The Management VLAN is used to separate the management and payload traffic data via dedicated VLAN Identifier (VID). Only the ingress packets that have the same VID as Management traffic VLAN can access the ePortal. Management traffic VLAN can also set the priority mapping to the 802.1Q. The management traffic and payload traffic can be configured as different priority. The higher priority assures management packets wouldn't be dropped in case of heavy traffic and congestion.

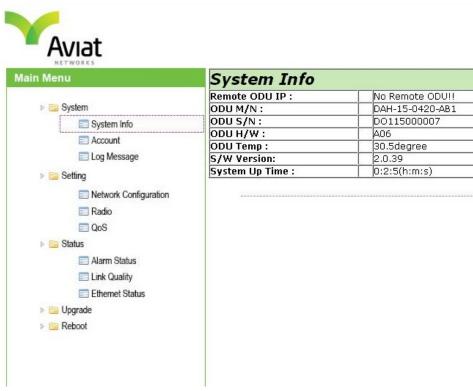
### 2.5. EQUIPMENT CONTROL AND MANAGEMENT

### 2.5.1. MANAGEMENT INTERFACES

There are two software programs available to configure and monitor the WTM 3100 performance:

- ePortal
- ProVision NMS

Moreover, users can measure the received power level by measuring the RSSI Auto Gain Controller (AGC) output.


### 2.5.2. SYSTEM MANAGEMENT BY EPORTAL

The ePortal enables easy access to the ODR using any web browser. Preferred browsers are Microsoft IE and Mozilla Firefox. Users don't need to install any 3rd party application software in order to access the ePortal.

The ePortal is the browser based configuration tool for WTM 3100. It offers complete control over all functions of the ODR. The ePortal shows the following general information:

- Account page allows the user to modify the user name and password
- Log Message page records event and failure logs
- Setting pages used for modifying the system configuration
- Status pages allows the user to monitor the current performance of radio and Ethernet interfaces





Aviat Corporation.

#### Figure 2-12: ePortal

#### 2.5.3. SYSTEM MANAGEMENT BY PROVISION NMS

ProVision is an alternative for monitoring and configuring the WTM 3100 ODR. It operates with an SNMP-based interface. Every item that is visible in ePortal can be also found and configured in ProVision. Furthermore, WTM 3100 also provides information about traps that are received by the ProVision SNMP trap server.

### 2.5.4. ALARMS AND MONITORING

Alarms are displayed in two ways – as alarms indicators in the ePortal or as SNMP traps sent to ProVision or the MIB browser. User can check the alarm status in ePortal. The alarm status is displayed by the lights on the "Alarm Status" page in the ePortal. ProVision or MIB browser can be used to catch the traps sent by the SNMP protocol. Detailed alarm descriptions are listed in the table below.

| Alarm | Description                                                                                                                                                                                         | SNMP Trap value       |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Modem | Modem alarm indicates the demodulator status. It turns green after the modem gets locked.                                                                                                           | 0: Normal<br>1: Alarm |
| RXLO1 | RXLO1 alarm indicates a failure on the IF and RF synthesizer of receiver. It turns green if the oscillator is locked. Any malfunction of the synthesizer makes it unlocked and the alarm turns red. | 0: Normal<br>1: Alarm |

| TXLO1                                                                                                                                                                                                                | TXLO1 alarm indicates a failure of transmitter IF and RF<br>synthesizer. It turns green if the oscillator is locked. Any failure on<br>synthesizer makes it become unlocked and the alarm turns red.                                                    | 0: Normal<br>1: Alarm |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| TXPowerAlarm                                                                                                                                                                                                         | TXPowerAlarm is an indicator of power amplifier performance in the XCVR. It turns green when the amplifier is turned on and operating normally. If the applied voltage is abnormal or the connection between XCVR and MCU is lost, the alarm turns red. | 0: Normal<br>1: Alarm |
| Airlossalarm                                                                                                                                                                                                         | Airlossalarm indicates the loss of modem lock. The status is green<br>if the modem is locked. This alarm can also join the modem alarm,<br>it turns green up if a strong co-channel interference occurs.                                                | 0: Normal<br>1: Alarm |
| SyncE_Lock         SyncE_Lock alarm indicates the active status of Synchronous Ethernet. If the Sync-E function is successfully enabled, it turn green. When not enabled, the enable Sync-E function it is turn red. |                                                                                                                                                                                                                                                         | 0: Normal<br>1: Alarm |
| Link_Alarm                                                                                                                                                                                                           | Link_Alarm is an indicator of Ethernet cable connection. If the RJ45 connector is properly linked to an active device, ECD or PC, the indicator turns green.                                                                                            | 0: Normal<br>1: Alarm |

#### Table 2-1: Alarm Description List

# 2.6. SYNCHRONOUS ETHERNET (SYNC-E) FEATURES

Unlike time-division multiplexing (TDM) networks, the Ethernet transmission does not include clock synchronization information. Synchronous Ethernet and Precision Time Protocol (IEEE 1588) are two clock synchronizing mechanisms for Ethernet. Carrier Ethernet services require synchronized clocks to fit into traditional TDM & synchronous optical networking systems.

WTM 3100 supports operation within a Synchronous Ethernet Network by allowing the clock propagation from one terminal of the link to the other (Clock Transparency). The clock information is transported on the radio link. It locks the symbol rate of the modulating signal (Tx) of the RF carrier to the clock-in from the network. On the receiver side, the clock-out to the network is locked to the symbol rate demodulated by the receiver.

The Clock Transparency can be configured by the operator. There are two working modes, according to user interface configuration either as GE or FE.

Holdover condition is entered every time the radio link is not operational or demodulator is unable to lock to the incoming radio signal.

When Sync-E is enabled, the clock specifications are compliant with QL-EEC1 and are summarized in Table 2-3.



#### 2.6.1. ODR CLOCK TRANSPARENCY WITH POE INJECTOR OPERATING AS GE

The feature allows the GE clock to be propagated from one terminal of the link (Clock-In) to the other (Clock-Out) as shown in Figure 2-13.

The PoE GE interfaces of the two ODR have to be configured as:

- Slave at the side from where the clock is received
- Master at the side to where the clock is distributed.

The symbol rate of the RF carrier is locked to the in-GE clock in both Master and Slave sides, while the clock recovered from the symbol rate of the received RF signal drives the out-GE clock on the Master side in normal operating conditions.

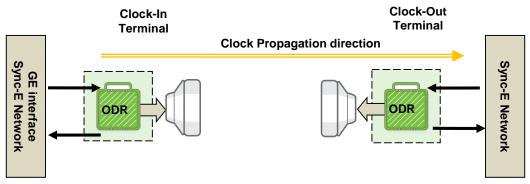



Figure 2-13; Clock Transparency on the ODR (GE)

- Slave: Equipment configured as Slave recovers the clock from the incoming Ethernet physical signal and uses that clock both to clock the outgoing Ethernet signal and the transmitted radio bit stream.
- Master: Equipment configured as Master recovers the clock from the incoming radio bit stream and uses that clock for the outgoing Ethernet.

| PoE Interface                         | Clock transparency | PHY Device Configuration                         |
|---------------------------------------|--------------------|--------------------------------------------------|
| GE Disabled GE Master/Slave auto mode |                    | GE Master/Slave auto mode                        |
|                                       | Enabled Ck In      | GE Master/Slave manual mode and forced to Slave  |
|                                       | Enabled Ck Out     | GE Master/Slave manual mode and forced to Master |
| FE                                    | All                | FE                                               |

The HW configurations to be set in different cases are summarized in Table 2-2.

Table 2-2; Timing Configurations on the ODR

### 2.6.2. ODR CLOCK TRANSPARENCY WITH POE INJECTOR OPERATING AS FE

If the PoE injector interface is configured as FE, the clocks of the In and Out signals are independent. Therefore in such case both ODRs must:

- Lock the Tx symbol rate on the RF signal to the In-FE signal
- Lock the Out-FE signal to the recovered symbol rate of the RF signal.

The clock is propagated bi-directionally in both directions even if under normal conditions only one clock propagation direction is useful (see Figure 2-14).

The HW configurations are shown in Table 2.4.

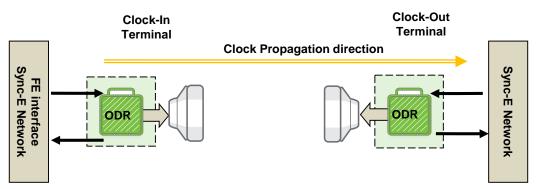



Figure 2-14; Clock Transparency on the ODR (FE)

#### 2.6.3. CLOCK SPECIFICATIONS

When Sync-E operation is disabled the clocks associated with the GE or FE PoE injector interface comply with standard requirements of IEEE 802.3.

When Sync-E is enabled, the clock specifications are compliant with QL-EEC1 and are summarized in Table 2-2.

| Frequency accuracy vs. PRC (Primary reference Clock) | ± 4.6 ppm (over 365 days period) |
|------------------------------------------------------|----------------------------------|
| Pull-in range (input freq. change tolerance)         | ± 4.6 ppm                        |
| Frequency drift due to aging during holdover         | 0.05 ppm/day                     |
| Frequency drift due to temperature during holdover   | 2.5 ppm                          |
| Wander generated @ output in 1000 s (15 min) 150 ns  |                                  |
| Table 2-3: Clock Specifications with Sync-F enabled  |                                  |

Table 2-3; Clock Specifications with Sync-E enabled

LIMITATION according to ITU-T G.8262 section, both free-run and holdover is not compliant since current system TCXO is not STIII type.

With current software version wander transfer can work only with wander input less than 6Hz with new software version this limitation will be removed. Next software version will support higher than 6 Hz.

### 2.6.4. SYNC-E ALARMS AND MONITORING

When Sync-E is enabled, the Clock recovered from the received symbol rate on the radio link is monitored. It is used to synchronize the GE/FE Clock out of the PoE injector or ECD interface only when the radio link is operating correctly (no demodulator alarm).

When a demodulator alarm is On, the ODR enters the Holdover state and the generated frequency at its output is frozen to the actual current value, being locked to the associated (Temperature



Compensate X\'tal (crystal) Oscillator) TCXO, until the demodulator alarm goes off and the normal operation restart.

#### 2.6.5. SSM MANAGEMENT

SSM messages possibly transmitted on the Network Interface are transparently transported by the system.

WTM 3100 supports default clock quality and is set at 11 according to SEC, Option 1.

**EEC-Option 1**; applies to synchronous Ethernet equipment that is designed to interwork with networks optimized for the 2048-kbit/s hierarchy.

**EEC-Option 2**; applies to synchronous Ethernet equipment that is designed to interwork with networks optimized for the 1544-kbit/s hierarchy.

SEC; ITU-T Rec. G.813, "Timing Requirements of SDH Equipment Slave Clocks

#### 2.7. IEEE 1588 - LIMITED SUPPORT

This protocol is designed to provide precision clock synchronization for network measurement.

WTM 3100 ODR acts as an End-to-End Transparent Clock (TC). This feature monitors the Ethernet packet Arrival and Departure Time to calculate the residence time. After that the protocol inserts this residence time into the field Correction of PTP packet.

IEEE 1588 specification requires nano second level precision, but the accuracy of WTM 3100 ODR clock is only micro second level.

# 3. PHYSICAL COMPOSITION AND CONFIGURATIONS

This section describes the WTM 3100 solution elements and WTM 3100 interfaces accessible by the User.

# **3.1. SOLUTION ELEMENTS**

In Figure 3-1, all WTM 3100 solution elements are shown. Each box represents a single element or piece of equipment that represents a part of an overall solution. Refer to WTM 3100 Product Ordering Guide for details how to order the equipment that is part of the solution.

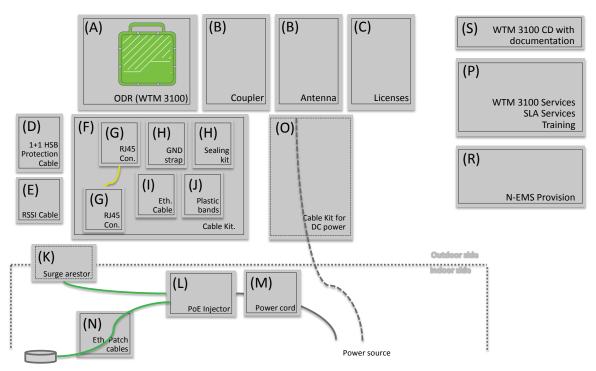



Figure 3-1; WTM 3100 solution elements

In Table 3-1, all WTM 3200 solution elements are listed with the description and usage recommendation.

| # | Description                                                                           | Usage                                                                            |
|---|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Α | WTM 3100 ODR units                                                                    | Mandatory part                                                                   |
| В | Eclipse Antennas attached via Slip-Fit or remotely mounted and Aviat Networks Coupler | Antenna Mandatory part<br>Coupler Optional part, depends on the<br>configuration |
| С | Licenses                                                                              | Optional, needed in case additional capacity or licensed feature is required.    |



| # | Description                                                                                                             | Usage                                                                      |
|---|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| D | 1+1 HSB Protection Cable                                                                                                | Optional needed in case of protected 1+1 HSB configuration                 |
| Е | RSSI measurement cable                                                                                                  | Optional needed by installer                                               |
| F | ODR to IDU Cable kit: Ethernet cable,<br>crimped with shielded RJ45 connector,<br>GND strap, Sealing kit Plastic Bands. | Use either cable kit, that have predefined length or each part, separately |
| к | Surge arrestor                                                                                                          | Optional                                                                   |
| L | PoE injector                                                                                                            | AC or DC variant                                                           |
| М | Power cord for AC PoE injector                                                                                          | AC with plug or DC variant, simple two wire cable                          |
| Ν | Ethernet patch cable                                                                                                    | Recommended                                                                |
| 0 | Auxiliary -48 VDC powering                                                                                              | Optional                                                                   |
| Ρ | WTM 3100 Services                                                                                                       | Recommended.                                                               |
| R | N-EMS, ProVision                                                                                                        | Recommended                                                                |
| S | WTM 3100 CD with documentation                                                                                          | Optional                                                                   |

Table 3-1; WTM 3100 solution Elements

Refer to the *WTM 3100 Tuning Guide* for details about all available WTM 3100 ODRs. And to the *WTM 3100 Purchase Ordering Guide* for more details how to configure the WTM 3100 solution elements.

# **3.2. ODR EXTERNAL INTERFACES**

There are five external interfaces on the WTM 3100 ODR housing where user connects dedicated cable. They are shown and explained in the Table 3-2 and Figure 3-2 following figure and table.

| # | Item/Label                                | Туре                              | Description                                                                                                                            |
|---|-------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Direct -48 VDC power feed                 | N-type, Female                    | -48 VDC power feed interface; this is an optional powering input port which can be used when the PoE powering option is not available. |
| 2 | 1+1 HSB Protection                        | RJ45, Special wiring              | RJ45 connector for 1+1 HSB protection<br>(only customized crossover cable can be used)                                                 |
| 3 | RSSI Monitor                              | BNC Female -50<br>Ohm             | RSSI monitoring port is used for the ODR installation.                                                                                 |
| 4 | Surge Ground                              | Grounding lug<br>(M5)             | Surge Ground pin to be ground ODR, being installed in the field.                                                                       |
| 5 | Payload and Management<br>Interface       | PoE RJ45,<br>10/100/1000<br>BaseT | PoE + Ethernet data port is the major connection between the ODR and ECD.                                                              |
| 6 | Aviat Networks Slip-Fit Antenna interface |                                   | Slip-Fit antenna interface and mounting arrangement.                                                                                   |
| 7 | Waterproof membrane vent                  |                                   | To equalize air pressure                                                                                                               |

Table 3-2: WTM 3100 External Interfaces

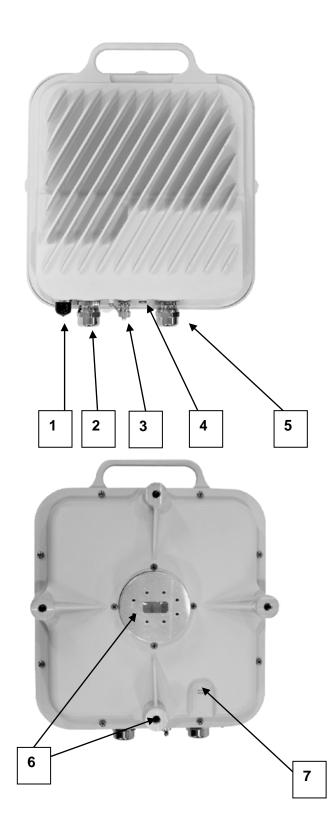



Figure 3-2; ODR housing with external interfaces



#### Direct -48 VDC power feed Interface

The N-type connector's center pin is -48V and outer jack is ground. On the ODR side N-type female connector is used.

Supported Input voltages range from -37 to -57 VDC

Maximum current at 48W and at min voltage 37 V is 1.2 A.

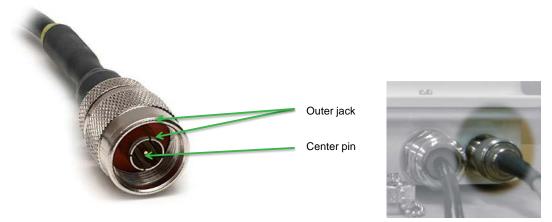



Figure 3-3; N-type cable interface for powering

#### 1+1 HSB Protection Interface

Protection interface is used to connect two WTM 3100 ODR, to enable 1+1 HSB protection configuration mode.

Refer to section 2.1.5, for more details about 1+1 HSB Protection cable.

A special brass nickel plated connector is used for higher durability and for all weather conditions.

Each connector is waterproof and sealed according to IP 65 rating.

Warning: When assembled according to the instructions, the connector is waterproof. If the connector is not tightened correctly, leakage may occur.



Figure 3-4; RJ45 connector for 1+1 HSB protection interface

Note: The sealing plug must be fitted if no cable is connected to the protection interface.

#### **RSSI Interface**

The Received Signal Strength Indicator (RSSI) interface allows the installer of the ODR to obtain information about the received RF signal level. A standard (portable) voltmeter can be used as measuring instrument. The main technical characteristics for RSSI are shown in Table 3-3. Parameter values are valid over the temperature/humidity range of the ODR climatogram and over the whole frequency range.

| Parameter               | Value                                                                                    |
|-------------------------|------------------------------------------------------------------------------------------|
| Connector type          | Female BNC, 50 $\Omega$ , waterproof                                                     |
| Waterproof level        | IP 65                                                                                    |
| Output voltage range    | 0.5 V ÷2.25 V                                                                            |
| Output impedance        | > 10kΩ                                                                                   |
| Nominal sensitivity     | 0.25V / 10 dB                                                                            |
| Slope                   | positive                                                                                 |
| Reference points        | +0.5 V @ PRX = -20 dBm<br>+2.25V @ PRX = -90 dBm                                         |
| Accuracy in the ePortal | ± 2 dB @ -40 to -70 dBm AND @0°C to +35°C<br>± 4 dB @ -25 to -85 dBm AND @-33°C to +55°C |

Table 3-3; RSSI Interface Characteristics



Figure 3-5; RSSI interface

#### **Ground lug Interface**

Grounding of the WTM 3100 is carried over the ground interface equipped with 5 mm mounting bolt. See the figure below for a view of the chisel-point lockwasher mounted on the attaching bolt. 34 AVIAT NETWORKS





Figure 3-6; Ground bolt

The ring connector, crimped onto a ground wire, is part of the cable Kit or can be ordered as separate accessory. Refer to the *WTM 3100 POG* for more details.

#### Payload and Management Interface

The ODR Payload interface carries payload traffic, management signals and power supply. On the ODR side, it has a waterproof RJ45 connector. Table 3-4 shows connector pin out.

| PIN | Signal | Description                                                                            |
|-----|--------|----------------------------------------------------------------------------------------|
| 1   | ETH_A- |                                                                                        |
| 2   | ETH_A+ | ETH_A, ETH_B, ETH_C and ETH_D are the four bidirectional Data signals                  |
| 3   | ETH_B- | according to 1000 BaseT standard.                                                      |
| 4   | ETH_C- | Dower food according to different Alternatives of 202 2st                              |
| 5   | ETH_C+ | All 4 pairs A, B, C, D are used bi-directionally to transmit the GE signal from/to the |
| 6   | ETH_B+ |                                                                                        |
| 7   | ETH_D- | User equipment                                                                         |
| 8   | ETH_D+ |                                                                                        |

 Table 3-4; ODR Signal Interface (RJ45 waterproof connector)

The characteristics of this interface are reported also in Table 4-3 and Table 5-1.

The user data traffic is composed of an Ethernet Frames stream according to IEEE 802.3. The main electrical specification of the signal is shown in Table 4-3.

The physical interface is a RJ45 connector. The pin assignment is reported in Table 3-4.

A special brass nickel plated connector is used for higher durability and for all weather conditions.

Each connector is waterproof and sealed according to IP 65 rating.



Figure 3-7; RJ45 connector for payload interface

#### Aviat Networks Slip-Fit Antenna Interface

WTM 3100 ODR is form & fit compatible with standard Aviat Networks Slip-Fit antennas and mounting arrangements. For more details about antenna refer to section 5.3.

#### Waterproof membrane vent

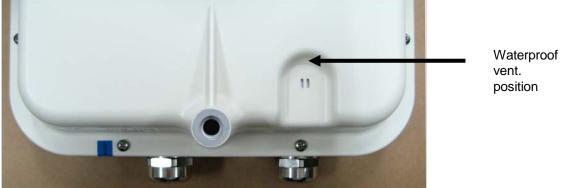
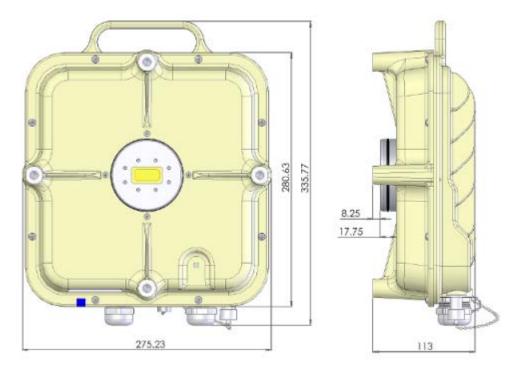




Figure 3-8; Waterproof vent position



# **3.3. MECHANICAL CHARACTERISTICS**



### Figure 3-9: WTM 3100 Mechanical Characteristics and dimensions

Refer to Section, Electrical and Mechanical and Table 4-5, for more details.

### 3.4. PRODUCT LABELING AND IDENTIFICATION

WTM 3100 ODR is equipped with the following labels:

- 1. Product compliance label
- 2. Product identification label
- 3. Product licenses label

Label position is shown on below Figure 3-10.

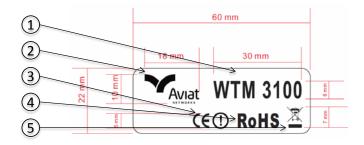



Figure 3-10; WTM 3100 labels and identification

### **Product compliance label**

Compliance label shows the following information:

- 1. WTM 3100 model name
- 2. Aviat logotype
- 3. CE declaration mark and alert sign
- 4. RoHS Compliance logotype
- 5. WEEE logotype



### Figure 3-11: WTM 3100 Compliance Label

### **Product Identification label**

Identification label shows the following information:

- 1. Supported T-R spacing
- 2. Low and High Tx and Rx Frequency
- 3. Part number
- 4. Serial Number
- 5. Product revision number
- 6. Short description



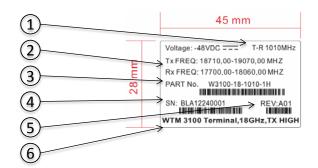



Figure 3-12: WTM 3100 Compliance Label

### Product licenses label

Licenses label shows the list of the supported licenses that are loaded to the unit during manufacturing and have the following information.

- 1. Part number of the ODR, this is the same as on product identification label
- 2. List of licenses Part numbers.

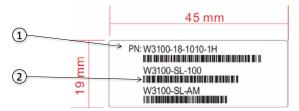



Figure 3-13: WTM 3100 Compliance Label

# 4. TECHNICAL SPECIFICATIONS - ODR - ETSI

This section describes the main technical characteristics of the WTM 3100 series with reference to the products referred to in Table 1-1.

The characteristics in tables refers to points A-A' and C-C' as shown in the below block diagram defined by ETSI specifications.

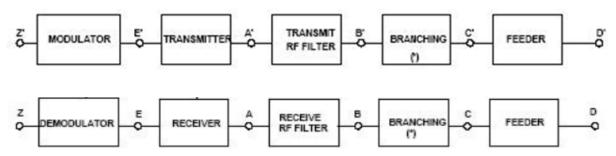



Figure 4-1; ETSI EN 302 217 System block diagram

Figure Notes:

Note 1: (\*) no filter included.

Note 2: For the purpose of defining the measurements points, the branching network doesn't include a hybrid.

Note 3: The points shown above are reference points only; points C and C', D and D' in general coincide.

Note 4: Points B and C, B' and C' may coincide when simple diplexer is used.

### 4.1. GENERAL

| Frequency band options  | Licensed                          | 7, 13, 15, 18, 23, 38 GHz        |  |
|-------------------------|-----------------------------------|----------------------------------|--|
| Modulation options      | Fixed                             | 4, 16, 32, 64, 128, 256 QAM      |  |
|                         | Adaptive                          | 4, 16, 32, 64, 128, 256 QAM      |  |
| Error Correction        |                                   | LDPC (Low Density Parity Check ) |  |
| ETSI radio channel size | Software configurable             | 7, 14, 28, 56 MHz                |  |
| Capacity range          | Airlink capacity                  | 10 - 360 Mbit/s                  |  |
|                         | Ethernet/IP throughput L2/64 byte | 7 - 274 Mbit/s                   |  |
| Configurations          | All Outdoor 1+0, 1+1 HSB          |                                  |  |

Table 4-1; General System specifications

| Symbol Rate and Gross<br>Bit Rate | See Table 4-19                                                         |  |
|-----------------------------------|------------------------------------------------------------------------|--|
| Modem Radio Frame                 | from 5000 to 42000 symbols                                             |  |
| Coding and Mapping                | LDPC coding on at least 2 bits per symbol and up to 8 bits per symbol. |  |

40 AVIAT NETWORKS



| Service Channel                 | 10 bytes per radio Frame (synch, AM control, ATPC, etc.) |
|---------------------------------|----------------------------------------------------------|
| Radio Scrambler<br>/Descrambler | Yes                                                      |
| Table 4.2: Modem encoifications |                                                          |

#### Table 4-2; Modem specifications

| Standard            | IEEE 802.3:2008           |
|---------------------|---------------------------|
| Symbol rate         | 125 MHz                   |
| Frequency tolerance | +/-100 ppm                |
| Coding              | 4B/5B MLT3@100Base-T      |
|                     | 8B/10B PAM@1000 GE Base-T |

### Table 4-3; Ethernet Interface specifications

#### **Electrical and Mechanical**

| Max / Typical Power consumption at ODR (All Bands)                            | 45 W / 40 W    |
|-------------------------------------------------------------------------------|----------------|
| Max / Typical Power consumption at ODR 1+0 Configuration (ODR + PoE injector) | 59 W / 55 W*   |
| Power Consumption Terminal 1+1 HSB (ODRs + PoE injectors)                     | 118 W / 110 W* |
| *Maggurements based on RowerDains 0501 DoE injector                           |                |

\*Measurements based on PowerDsine 9501 PoE injector

### Table 4-4; Power Consumption specifications

| Housing    | Rectangular shape container with handle.              |  |
|------------|-------------------------------------------------------|--|
| Paint      | RAL1015                                               |  |
| Dimensions | 336 x 275 x 113 mm                                    |  |
| Weight     | 5.5 kg                                                |  |
| Antenna    | Compatible with Aviat Networks Slip Fit Design system |  |

Table 4-5; Mechanical Characteristics

### Environmental

| Temperature range         | Operating | -33°C to 55°C     |
|---------------------------|-----------|-------------------|
| Humidity                  | Operating | 0 to 100%         |
| Altitude                  | Operating | Up to 3000 meters |
| Degree of Protection IP65 |           | IP65              |

Table 4-6; Environmental Conditions

### **Fault and Configuration Management**

| Protocol               |          |            | SNMP v1, v2c (RFC1441-1452)               |
|------------------------|----------|------------|-------------------------------------------|
| Interface, electrical  |          |            | Ethernet 10/100/1000 Base-T               |
| Interface, physical    |          |            | RJ45                                      |
| Performance monitoring | Simple   |            | Tx/Rx frame count, frame CRC errors count |
| Element management     | Browser- | EM Network | Aviat Networks ProVision®                 |
|                        | based    | EM Local   | ePortal                                   |
| Management channel     |          |            | Dedicated VLAN with highest priority      |

**41 AVIAT NETWORKS** 

September 2012

### Table 4-7; Management Interface options

### **Emission Designator**

| Bandwidth                      | 7 MHz   | 14 MHz  | 28 MHz  | 56 MHz  |
|--------------------------------|---------|---------|---------|---------|
| Emission Designator            | 7M00D7W | 14M0D7W | 28M0D7W | 56M0D7W |
| Table 4-8; Emission Designator |         |         |         |         |

### **Standards Compliance**

| EMC                             | EN 301 489-1, EN 301 489-4, EN 55022 (Class A)             |  |
|---------------------------------|------------------------------------------------------------|--|
| Operation                       | EN 300 019-2-4 test T 4.1 (IEC Class 4M5 for vibrations)   |  |
|                                 | EN 300 019-2-4 test T4.1 (IEC Class 4M3 for shocks)        |  |
| Safety                          | EN 60950-1, IEC 60950-1, EN 60950-22, IEC 60950-22         |  |
| RF performance                  | EN 302 217-2-2                                             |  |
| Lightning protection            | Surge 5 kV - 10/700 microsec ITU-T k.45 for Ethernet Cable |  |
| Maximum Permissible<br>Exposure | EN 50385                                                   |  |
| RoHS                            | 2002/95/EC                                                 |  |
| WEEE compliance                 | 2002/96/EC                                                 |  |

Table 4-9; Electromagnetic compatibility and safety standards

### Interfaces

| Traffic and management         |                       | RJ45 (10/100/1000 BaseT)                                                |
|--------------------------------|-----------------------|-------------------------------------------------------------------------|
| 1+1 HSB Protection             |                       | RJ45 (Special wiring)                                                   |
| Direct DC power                |                       | -37 VDC to -57 VDC                                                      |
| RSSI                           |                       | Female BNC, 50 ohm                                                      |
| Antenna port interface         | 7-38 GHz              | Standard EIA rectangular waveguide                                      |
| Antenna mounting               | 7-38 GHz,<br>standard | Aviat Networks Slip-Fit direct mount for antenna diameters 0.3 to 1.8 m |
|                                | 7-38 GHz, optional    | Remote mount via flex/elliptical waveguide                              |
| Polarization, field selectable |                       | Vertical or horizontal polarization, by manually rotation the ODR       |
| Grounding lug                  |                       | M5                                                                      |

Table 4-10; Interfaces

### 4.2. TRANSMITER

In the following tables the most important RF Parameters are reported, compliant with the ETSI reference standards shown in Table 4-12.

| Transmitter source  | Synthesized |
|---------------------|-------------|
| Frequency stability | ± 5 ppm     |

42 AVIAT NETWORKS



| 4 QAM   | 0-25.5 dBm |
|---------|------------|
| 16 QAM  | 0-23.5 dBm |
| 32 QAM  | 0-23 dBm   |
| 64 QAM  | 0-22.5 dBm |
| 128 QAM | 0-21.5 dBm |
| 256 QAM | 0-19.5 dBm |

### Manual transmitter power control range

# Automatic transmitter power control resolution

| Range 4 QAM      | 0-20 dBm             |
|------------------|----------------------|
| Range 16 QAM     | 0-18 dBm             |
| Range 32 QAM     | 0-17.5 dBm           |
| Range 64 QAM     | 0-17 dBm             |
| Range 128 QAM    | 0-16 dBm             |
| Range 256 QAM    | 0-14 dBm             |
| Resolution/speed | 1 dB steps / 50 dB/s |

| Transmitter mute              | < -50 dBm                                      |  |
|-------------------------------|------------------------------------------------|--|
| Channel selection             | By software control within tuning range of ODR |  |
| Synthesizer resolution        | 0.25 MHz                                       |  |
| Table 4.44, Transmitter Creek |                                                |  |

Table 4-11; Transmitter Specifications

### **Standard References**

|                                     | 7 GHz                              | 13 GHz                             | 15 GHz                        | 18 GHz                              | 23 GHz                        | 38 GHz                         |
|-------------------------------------|------------------------------------|------------------------------------|-------------------------------|-------------------------------------|-------------------------------|--------------------------------|
| Frequency<br>Range [GHz]            | 7.125 - 7.9                        | 12.75-13.25                        | 14.4 - 15.35                  | 17.7 - 19.7                         | 21.2 - 23.6                   | 37.0 - 40.0                    |
| T-R Spacings<br>supported,<br>[MHz] | 150, 154,<br>161, 175,<br>196, 245 | 266                                | 315, 420,<br>490, 644,<br>728 | 340<br>1010<br>1560                 | 1008, 1200,<br>1232           | 1260                           |
| Channeling<br>[ITU-R]               | F.385-9,<br>Annex<br>1,3,4,5       | F.497-7                            | F. 636-3                      | F.595-9<br>Annex<br>2,3,4,<br>5,6,7 | F.637-3,<br>Annex<br>1,3,4,5  | F.749-2                        |
| Channeling<br>[CEPT]                | ECC Rec.<br>(02)06<br>Annex 1,3    | ERC Rec.<br>12-02E<br>Annex<br>A,B | ERC Rec.<br>12-07E            | ERC Rec.<br>12-03E                  | ERC Rec.<br>13-02E<br>Annex A | ERC Rec.<br>12-01 E<br>Annex A |
| ETSI reference standard             | 302 217                            | 302 217                            | 302 217                       | 302 217                             | 302 217                       | 302 217                        |
| Synthesizer<br>Step size            | 250 kHz                            | 250 kHz                            | 250 kHz                       | 250 kHz                             | 250 kHz                       | 250 kHz                        |

| tuning range |
|--------------|
|--------------|

Table 4-12; ETSI Standard References

### **RF** Antenna interface

|                       | 7 GHz             | 13 GHz              | 15 GHz              | 18 GHz         | 23 GHz         | 38 GHz         |
|-----------------------|-------------------|---------------------|---------------------|----------------|----------------|----------------|
| Flange Type           | UDR84             | UBR140              | UBR140              | UBR220         | UBR220         | UBR320         |
| Mating Flange<br>Type | PDR84 or<br>CDR84 | PBR140 or<br>CBR140 | PBR140 or<br>CBR141 | PBR220         | PBR220         | PBR320         |
| Waveguide<br>Type     | R84<br>(WR112)    | R140<br>(WR62)      | R140<br>(WR62)      | R220<br>(WR42) | R220<br>(WR42) | R320<br>(WR28) |

Table 4-13; RF Antenna interface specifications

### Transmitter Output Power [dBm]

| 7 GHz | 13 GHz                             | 15 GHz                                                                                                | 18 GHz                                                                                                                                               | 23 GHz                                                                                                                                                                                                    | 38 GHz                                                                         |
|-------|------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 25.5  | 24                                 | 24                                                                                                    | 19.5                                                                                                                                                 | 19.5                                                                                                                                                                                                      | 17.5                                                                           |
| 23.5  | 22                                 | 22                                                                                                    | 17.5                                                                                                                                                 | 17.5                                                                                                                                                                                                      | 15.5                                                                           |
| 23    | 21.5                               | 21.5                                                                                                  | 17                                                                                                                                                   | 17                                                                                                                                                                                                        | 15                                                                             |
| 22.5  | 21                                 | 21                                                                                                    | 16.5                                                                                                                                                 | 16.5                                                                                                                                                                                                      | 14.5                                                                           |
| 21.5  | 20                                 | 20                                                                                                    | 15.5                                                                                                                                                 | 15.5                                                                                                                                                                                                      | 13.5                                                                           |
| 19.5  | 18                                 | 18                                                                                                    | 13.5                                                                                                                                                 | 13.5                                                                                                                                                                                                      | 11.5                                                                           |
|       | 25.5<br>23.5<br>23<br>22.5<br>21.5 | 25.5       24         23.5       22         23       21.5         22.5       21         21.5       20 | 25.5       24       24         23.5       22       22         23       21.5       21.5         22.5       21       21         21.5       20       20 | 25.5       24       24       19.5         23.5       22       22       17.5         23       21.5       21.5       17         22.5       21       21       16.5         21.5       20       20       15.5 | 25.5242419.519.523.5222217.517.52321.521.5171722.5212116.516.521.5202015.515.5 |

Table 4-14; Transmitter Output Power

Typical Output Power values in dBm ( $P_{TxMax}$ ) at antenna port are shown in Table 4-14. Values are valid over the whole temperature/humidity range of ODR climatogram and over the whole frequency range of the unit.

For Guaranteed values (over time and operational range) subtract 2 dB from Power Output, add 2dB to Threshold values.

### 4.3. RECEIVER

| Receiver source                      | Synthesized                   |                               |
|--------------------------------------|-------------------------------|-------------------------------|
| LO Frequency Stability               | ± 5 ppm                       |                               |
| Rx Max Input Level                   | No damage                     | 0 dBm                         |
|                                      | Error free operation          | -20 dBm                       |
| Residual (Background) Bit Error Rate |                               | Better than 10 <sup>-12</sup> |
| RSSI Accuracy (measured at BNC port) | -40 to -70 dBm@0°C to +35°C   | ± 2 dB                        |
|                                      | -25 to -85 dBm@-33°C to +55°C | ± 4 dB                        |

Table 4-15; Receiver Specifications

#### **Rx Sensitivity**



|                | 7 GHz | 13 GHz | 15 GHz | 18 GHz | 23 GHz | 38 GHz |
|----------------|-------|--------|--------|--------|--------|--------|
| 7 MHz Channel  |       |        |        |        |        |        |
| 4 QAM          | -92.5 | -92.5  | -92    | -92    | -91.5  | -90    |
| 16 QAM         | -86   | -86    | -85.5  | -85.5  | -85    | -83.5  |
| 32 QAM         | -82   | -82    | -81.5  | -81.5  | -81    | -79.5  |
| 64 QAM         | -78.5 | -78.5  | -78    | -78    | -77.5  | -76    |
| 128 QAM        | -74.5 | -74.5  | -74    | -74    | -73.5  | -72    |
| 256 QAM        | -71.5 | -71.5  | -71    | -71    | -70.5  | -69    |
| 14 MHz Channel | · · · |        |        |        |        |        |
| 4 QAM          | -89.5 | -89.5  | -89    | -89    | -88.5  | -87    |
| 16 QAM         | -83   | -83    | -82.5  | -82.5  | -82    | -80.5  |
| 32 QAM         | -79   | -79    | -78.5  | -78.5  | -78    | -76.5  |
| 64 QAM         | -75.5 | -75.5  | -75    | -75    | -74.5  | -73    |
| 128 QAM        | -71.5 | -71.5  | -71    | -71    | -70.5  | -69    |
| 256 QAM        | -68.5 | -68.5  | -68    | -68    | -67.5  | -66    |
| 28 MHz Channel |       |        |        |        |        |        |
| 4 QAM          | -86.5 | -86.5  | -86    | -86    | -85.5  | -84    |
| 16 QAM         | -80   | -80    | -79.5  | -79.5  | -79    | -77.5  |
| 32 QAM         | -76   | -76    | -75.5  | -75.5  | -75    | -73.5  |
| 64 QAM         | -72.5 | -72.5  | -72    | -72    | -71.5  | -70    |
| 128 QAM        | -68.5 | -68.5  | -68    | -68    | -67.5  | -66    |
| 256 QAM        | -65.5 | -65.5  | -65    | -65    | -64.5  | -63    |
| 56 MHz Channel |       |        |        |        |        |        |
| 4 QAM          | -83.5 | -83.5  | -83    | -83    | -82.5  | -81    |
| 16 QAM         | -77   | -77    | -76.5  | -76.5  | -76    | -74.5  |
| 32 QAM         | -73   | -73    | -72.5  | -72.5  | -72    | -70.5  |
| 64 QAM         | -69.5 | -69.5  | -69    | -69    | -68.5  | -67    |
| 128 QAM        | -65.5 | -65.5  | -65    | -65    | -64.5  | -63    |
| 256 QAM        | -62.5 | -62.5  | -62    | -62    | -61.5  | -60    |

Table 4-16; Rx Sensitivity [dBm] @ BER=10-6

Note: Typical values are shown. For Guaranteed values (over time and operational range), reduce the sensitivity by 2 dB, e.g. -85 dBm typical = -83 dBm guaranteed. Receiver Threshold, BER = 10-6, in dBm\*

# 4.4. PROTECTION LOSSES

Coupler option

|                | Frequency band                      | Main channel           | Protection channel     |
|----------------|-------------------------------------|------------------------|------------------------|
| Coupler option | 7 to 18 GHz / 21 to 32 GHz / 38 GHz | 3.6 dB / 3.8 dB / 4 dB | 3.6 dB / 3.8 dB / 4 dB |

|                     | 7 to 18 GHz / 21 to 32 GHz / 38 GHz  | 1.6 dB / 1.8 dB / 2 dB | 6.6 dB / 6.8 dB / 7 dB |
|---------------------|--------------------------------------|------------------------|------------------------|
| Table 4-17: Additio | nal Protection Losses with Available | Couplers               |                        |

4.5. CARRIER ETHERNET & IP SPECIFICATIONS

| Ethernet Standards                    | Ethernet                     | IEEE 802.3                                               |  |
|---------------------------------------|------------------------------|----------------------------------------------------------|--|
| Compliance                            | Networking Protocols         | IPv4 (as per RFC791) and IPv6 (pass through)             |  |
| User ports                            | RJ45                         | 10/100/1000 Base-T                                       |  |
| Burst and Frame Handling<br>(Typical) | Ethernet Port Buffer<br>Size | 128 kB                                                   |  |
|                                       | Max frame size               | 9.6 kB                                                   |  |
| MAC address register                  |                              | 4096 entries                                             |  |
| QoS                                   | Transmission Queues          | With WRR and SP queuing                                  |  |
|                                       | Scheduling                   | Hybrid WRR+SP                                            |  |
|                                       | Classification               | IEEE 802.1p QoS/CoS bits                                 |  |
| Synchronization                       | Sync-E Standards             | ITU-T 8261, G.8262 (HW), G.8264 (SW),<br>G.8264 SSM      |  |
|                                       | Holdover clock               | '±2 ppm TCXO                                             |  |
|                                       | Ingress clock<br>reference   | Selectable, external only                                |  |
|                                       | Sync-E. States               | Operational nonoperational state.<br>Free Run or Locked. |  |
| Monitoring                            | Status                       | Tx/Rx frame count, CRC errors count                      |  |

Table 4-18; Ethernet / IP specifications



# 4.5.1. DISPERSIVE FADE MARGIN (DFM)

| Channel<br>Bandwidth | Modulation | Symbol rate<br>[Mbaud] | Gross bit rate<br>[Mbit/s] | DFM<br>[dB] |
|----------------------|------------|------------------------|----------------------------|-------------|
| 7 MHz                | 4 QAM      | 6.05                   | 10.00                      | 66.00       |
| 7 MHz                | 16 QAM     | 6.05                   | 20.00                      | 66.00       |
| 7 MHz                | 32 QAM     | 6.05                   | 25.00                      | 66.00       |
| 7 MHz                | 64 QAM     | 6.05                   | 30.00                      | 65.00       |
| 7 MHz                | 128 QAM    | 6.05                   | 36.00                      | 64.00       |
| 7 MHz                | 256QAM     | 6.05                   | 41.00                      | 61.00       |
| 14 MHz               | 4 QAM      | 12.10                  | 20.00                      | 63.00       |
| 14 MHz               | 16 QAM     | 12.10                  | 40.00                      | 62.00       |
| 14 MHz               | 32 QAM     | 12.10                  | 51.00                      | 61.00       |
| 14 MHz               | 64 QAM     | 12.10                  | 64.00                      | 60.00       |
| 14 MHz               | 128 QAM    | 12.10                  | 75.00                      | 55.00       |
| 14 MHz               | 256 QAM    | 12.10                  | 86.00                      | 53.00       |
| 28 MHz               | 4 QAM      | 24.60                  | 40.00                      | 62.00       |
| 28 MHz               | 16 QAM     | 24.60                  | 80.00                      | 57.00       |
| 28 MHz               | 32 QAM     | 24.60                  | 101.00                     | 53.00       |
| 28 MHz               | 64 QAM     | 24.60                  | 127.00                     | 50.00       |
| 28 MHz               | 128 QAM    | 24.60                  | 152.00                     | 47.00       |
| 28 MHz               | 256 QAM    | 24.60                  | 176.00                     | 40.00       |
| 56 MHz               | 4 QAM      | 49.21                  | 81.00                      | 62.00       |
| 56 MHz               | 16 QAM     | 49.21                  | 163.00                     | 48.00       |
| 56 MHz               | 32 QAM     | 49.21                  | 204.00                     | 44.00       |
| 56 MHz               | 64 QAM     | 49.21                  | 260.00                     | 42.00       |
| 56 MHz               | 128 QAM    | 49.21                  | 308.00                     | 38.00       |
| 56 MHz               | 256 QAM    | 49.21                  | 357.00                     | 35.00       |

# 4.6. PAYLOAD CHARACTERISTICS

This table shows Air Link Capacity, L1 and L2 throughput values for different frame sizes, as a function of the Channel Spacing and Modulation Index, for two lengths (64 and 1518) of the MAC frame. The MAC Rate (throughput) is the transmission rate (Mbit/s) considering only the MAC frame bytes transmitted in a second.

# Note: the relationship between MAC Rate and Utilization depends on the length of the frames.

|                | Modulation | Air link<br>Capacity | Ethernet L1<br>Throughput | [Mbit/s] | Ethernet L2 Throughp<br>[Mbit/s] |         |
|----------------|------------|----------------------|---------------------------|----------|----------------------------------|---------|
|                |            | Ethernet<br>[Mbit/s] | 1518 byte                 | 64 byte  | 1518 byte                        | 64 byte |
| 7 MHz Channel  |            |                      |                           |          |                                  |         |
|                | 4 QAM      | 10                   | 10                        | 10       | 9                                | 7       |
|                | 16 QAM     | 20                   | 20                        | 20       | 19                               | 15      |
|                | 32 QAM     | 25                   | 25                        | 25       | 24                               | 19      |
|                | 64 QAM     | 30                   | 30                        | 30       | 29                               | 22      |
|                | 128 QAM    | 36                   | 36                        | 36       | 35                               | 27      |
|                | 256 QAM    | 41                   | 41                        | 41       | 40                               | 31      |
| 14 MHz Channel |            |                      |                           |          |                                  |         |
|                | 4 QAM      | 20                   | 20                        | 20       | 19                               | 15      |
|                | 16 QAM     | 40                   | 40                        | 40       | 39                               | 30      |
|                | 32 QAM     | 51                   | 51                        | 51       | 50                               | 38      |
|                | 64 QAM     | 64                   | 64                        | 64       | 63                               | 48      |
|                | 128 QAM    | 75                   | 75                        | 75       | 74                               | 57      |
|                | 256 QAM    | 86                   | 86                        | 86       | 84                               | 65      |
| 28 MHz Channel |            | ·                    | ·                         | ·        |                                  |         |
|                | 4 QAM      | 41                   | 41                        | 41       | 40                               | 31      |
|                | 16 QAM     | 84                   | 84                        | 84       | 82                               | 64      |
|                | 32 QAM     | 105                  | 105                       | 105      | 103                              | 80      |
|                | 64 QAM     | 129                  | 129                       | 129      | 127                              | 98      |
|                | 128 QAM    | 153                  | 153                       | 153      | 151                              | 116     |
|                | 256 QAM    | 177                  | 177                       | 177      | 173                              | 134     |
| 56 MHz Channel |            |                      |                           |          |                                  |         |
|                | 4 QAM      | 84                   | 84                        | 84       | 82                               | 64      |
|                | 16 QAM     | 168                  | 168                       | 168      | 165                              | 127     |
|                | 32 QAM     | 210                  | 210                       | 210      | 207                              | 160     |
|                | 64 QAM     | 264                  | 264                       | 264      | 258                              | 199     |
|                | 128 QAM    | 310                  | 310                       | 310      | 305                              | 236     |
|                | 256 QAM    | 360                  | 360                       | 360      | 355                              | 274     |

The values have been calculated or measured according to RFC 2544.

Table 4-19; ETSI Payload Gross Bit Rate on the Radio Channel



# 4.6.1. LATENCY

Latency is Transmission Delay of Ethernet frames.

The transit time in a complete WTM 3100 link is reported in the below table as a function of the different Channel Spacing (CS) and Modulation Index (MI).

Values are measured with fixed modulation and at the 1+0 configuration.

The measurement is done using traffic with 1518 byte frames and with a link load less than 80 % according to the maximum MAC rate supported by the CS and MI.

Latencies are calculated or measured according to RFC 2544.

| Channel Size (CS)    | Latency per Link [msec] – Fixed Modulation |          |          |          |              |              |  |  |
|----------------------|--------------------------------------------|----------|----------|----------|--------------|--------------|--|--|
|                      | [4 QAM]                                    | [16 QAM] | [32 QAM] | [64 QAM] | [128<br>QAM] | [256<br>QAM] |  |  |
| Minimum Value [msec] |                                            |          |          |          |              |              |  |  |
| 7 MHz                | 1195                                       | 634      | 523      | 565      | 541          | 533          |  |  |
| 14 MHz               | 914                                        | 489      | 401      | 447      | 435          | 437          |  |  |
| 28 MHz               | 460                                        | 248      | 205      | 233      | 226          | 222          |  |  |
| 56 MHz               | 238                                        | 133      | 112      | 122      | 120          | 117          |  |  |
| Average Value [msec] |                                            |          |          |          |              |              |  |  |
| 7 MHz                | 1206                                       | 643      | 531      | 575      | 551          | 544          |  |  |
| 14 MHz               | 920                                        | 493      | 406      | 451      | 439          | 441          |  |  |
| 28 MHz               | 463                                        | 250      | 207      | 235      | 228          | 224          |  |  |
| 56 MHz               | 240                                        | 134      | 113      | 124      | 121          | 118          |  |  |
| Maximum Value [msec] |                                            |          |          |          |              |              |  |  |
| 7 MHz                | 1224                                       | 654      | 540      | 584      | 560          | 552          |  |  |
| 14 MHz               | 932                                        | 500      | 411      | 457      | 445          | 447          |  |  |
| 28 MHz               | 469                                        | 254      | 210      | 237      | 231          | 227          |  |  |
| 56 MHz               | 243                                        | 137      | 115      | 126      | 123          | 120          |  |  |

Table 4-20; Latency per Link (ms), Fixed Modulation (Minimal, Average and Maximum values)

# 4.7. SUPPORTED CHANNEL SPACINGS AND MODULATIONS

| Modulation | ETSI setting, Chann | ETSI setting, Channel spacing [MHz] |          |          |  |  |  |  |  |
|------------|---------------------|-------------------------------------|----------|----------|--|--|--|--|--|
|            | 7                   | 14                                  | 28       | 56       |  |  |  |  |  |
| 4 QAM      | <b>*</b>            | <b>*</b>                            | <b>*</b> | <b>*</b> |  |  |  |  |  |
| 16 QAM     | <b>*</b>            | ×                                   | *        | *        |  |  |  |  |  |
| 32 QAM     | 4                   | <b>*</b>                            | ×        | *        |  |  |  |  |  |
| 64 QAM     | <b>*</b>            | ×                                   | Ý        | *        |  |  |  |  |  |
| 128 QAM    | 4                   | ×                                   | <b>*</b> | *        |  |  |  |  |  |
| 256 QAM    | NA                  | <b>*</b>                            | <b>*</b> | *        |  |  |  |  |  |

 Table 4-21; Supported Ch. Spacing's and Modulations

# 4.8. SYSTEM GAIN

| [dB]          | 7 GHz | 13 GHz | 15 GHz | 18 GHz | 23 GHz | 38 GHz |
|---------------|-------|--------|--------|--------|--------|--------|
| 7 MHz Channel |       |        |        |        |        |        |
| 4 QAM         | 118   | 116.5  | 116    | 111.5  | 111    | 107.5  |
| 16 QAM        | 109.5 | 108    | 107.5  | 103    | 102.5  | 99     |
| 32 QAM        | 105   | 103.5  | 103    | 98.5   | 98     | 94.5   |
| 64 QAM        | 101   | 99.5   | 99     | 94.5   | 94     | 90.5   |
| 128 QAM       | 96    | 94.5   | 94     | 89.5   | 89     | 85.5   |
| 256 QAM       | 91    | 89.5   | 89     | 84.5   | 84     | 80.5   |
| 4 MHz Channel | ·     |        | ·      | ·      |        |        |
| 4 QAM         | 115   | 113.5  | 113    | 108.5  | 108    | 104.5  |
| 16 QAM        | 106.5 | 105    | 104.5  | 100    | 99.5   | 96     |
| 32 QAM        | 102   | 100.5  | 100    | 95.5   | 95     | 91.5   |
| 64 QAM        | 98    | 96.5   | 96     | 91.5   | 91     | 87.5   |
| 128 QAM       | 93    | 91.5   | 91     | 86.5   | 86     | 82.5   |
| 256 QAM       | 88    | 86.5   | 86     | 81.5   | 81     | 77.5   |
| 8 MHz Channel |       |        | 1      |        |        | 1      |
| 4 QAM         | 112   | 110.5  | 110    | 105.5  | 105    | 101.5  |
| 16 QAM        | 103.5 | 102    | 101.5  | 97     | 96.5   | 93     |
| 32 QAM        | 99    | 97.5   | 97     | 92.5   | 92     | 88.5   |
| 64 QAM        | 95    | 93.5   | 93     | 88.5   | 88     | 84.5   |
| 128 QAM       | 90    | 88.5   | 88     | 83.5   | 83     | 79.5   |
| 256 QAM       | 85    | 83.5   | 83     | 78.5   | 78     | 74.5   |
| 6 MHz Channel |       |        |        |        |        |        |
| 4 QAM         | 109   | 107.5  | 107    | 102.5  | 102    | 98.5   |
| 16 QAM        | 100.5 | 99     | 98.5   | 94     | 93.5   | 90     |
| 32 QAM        | 96    | 94.5   | 94     | 89.5   | 89     | 85.5   |
| 64 QAM        | 92    | 90.5   | 90     | 85.5   | 85     | 81.5   |
| 128 QAM       | 87    | 85.5   | 85     | 80.5   | 80     | 76.5   |
| 256 QAM       | 82    | 80.5   | 80     | 75.5   | 75     | 71.5   |

Table 4-22; System Gain @ BER=10-6 (equiv. FER=5x10-4) (ETSI)

Note: Typical values are shown. System Gain, BER = 10-6, in dB



### 4.9. CHANNEL INTERFERENCE THRESHOLDS

### Co-channel interference (RSL degradation of 1 dB)

| Modulation                        | Spectral eff. | 7 GHz | 13 GHz | 15 GHz | 18 GHz | 23 GHz | 38 GHz |
|-----------------------------------|---------------|-------|--------|--------|--------|--------|--------|
| C/I (dB) for BER≤10 <sup>-€</sup> | 3             |       |        |        |        |        |        |
| 7 MHz Channel                     |               |       |        |        |        |        |        |
| 4 QAM                             | 2             | 8.6   | 12.84  | 12.66  | 10     | 12.7   | 12     |
| 16 QAM                            | 4L            | 16.3  | 19.34  | 21.66  | 25.5   | 25.2   | 19     |
| 32 QAM                            | 4H            | 21.8  | 20.67  | 24.84  | 28     | 25.9   | 24.5   |
| 64 QAM                            | 5B            | 22.8  | 23.33  | 26.66  | 26.5   | 29.4   | 26     |
| 128 QAM                           | 5B            | 26.8  | 27.16  | 30     | 29.5   | 31.8   | 29     |
| 14 MHz Channel                    |               |       |        |        |        |        |        |
| 4 QAM                             | 2             | 10.3  | 9      | 11.17  | 10.5   | 15.6   | 15     |
| 16 QAM                            | 4L            | 20.7  | 16.66  | 27.33  | 20     | 22.1   | 21     |
| 32 QAM                            | 4H            | 22.8  | 19.5   | 24.83  | 21.2   | 23.9   | 24.5   |
| 64 QAM                            | 5B            | 22.8  | 23.5   | 30.83  | 21     | 29.1   | 26.5   |
| 128 QAM                           | 5B            | 27.3  | 26.17  | 31.5   | 24.9   | 30.2   | 29     |
| 256 QAM                           | 6B            | 30.6  | 30.5   | 34     | 28.1   | 33.7   | 33     |
| 28 MHz Channel                    |               |       |        |        |        |        |        |
| 4 QAM                             | 2             | 16.3  | 10.16  | 12.33  | 7.9    | 16.7   | 13     |
| 16 QAM                            | 4L            | 22.3  | 19.33  | 14.63  | 15.8   | 23.1   | 23     |
| 32 QAM                            | 4H            | 22.8  | 20.83  | 23.17  | 18.7   | 25.3   | 25     |
| 64 QAM                            | 5A/5B         | 22.8  | 22.83  | 24.34  | 23.8   | 29     | 26     |
| 128 QAM                           | 5A/5B         | 26.8  | 26.17  | 28.84  | 23     | 32.2   | 29     |
| 256 QAM                           | 6A/6B         | 30.1  | 29     | 32.83  | 28.4   | 33.7   | 32     |
| 56 MHz Channel                    |               |       |        |        |        |        |        |
| 4 QAM                             | 2             | 11.3  | 9      | 12.5   | 8.3    | 17.4   | 14     |
| 16 QAM                            | 4L            | 23.3  | 16.83  | 21.5   | 15.4   | 23.2   | 23     |
| 32 QAM                            | 4H            | 21.3  | 20     | 24.17  | 19     | 26.3   | 26     |
| 64 QAM                            | 5A/5B         | 21.2  | 23.66  | 26     | 21.3   | 28.4   | 29     |
| 128 QAM                           | 5A/5B         | 25.8  | 27     | 27.66  | 24.6   | 32.1   | 32     |
| 256 QAM                           | 6A/6B         | 30.6  | 28     | 30.5   | 32.5   | 33.7   | 35     |

Table 4-23; C/I (dB) for BER≤10-6 - Co-channel interference (1 dB degradation)

| Modulation                        | Spectral eff. | 7 GHz | 13 GHz | 15 GHz | 18 GHz | 23 GHz | 38 GHz |
|-----------------------------------|---------------|-------|--------|--------|--------|--------|--------|
| C/I (dB) for BER≤10 <sup>-6</sup> | ;             |       |        |        |        |        |        |
| 7 MHz Channel                     |               |       |        |        |        |        |        |
| 4 QAM                             | 2             | 7.5   | 11.5   | 11.33  | 11.7   | 11.6   | 10     |
| 16 QAM                            | 4L            | 14.3  | 19     | 20.5   | 17.8   | 18.7   | 16     |
| 32 QAM                            | 4H            | 17.8  | 20     | 21.83  | 22.6   | 22.5   | 20     |
| 64 QAM                            | 5B            | 20.8  | 22.83  | 24.83  | 24.3   | 24.1   | 24     |
| 128 QAM                           | 5B            | 24.8  | 26.66  | 27.34  | 25.4   | 27.6   | 26     |
| 14 MHz Channel                    | ·             |       |        |        |        |        |        |
| 4 QAM                             | 2             | 8.1   | 8.67   | 10.33  | 9.2    | 9.9    | 12     |
| 16 QAM                            | 4L            | 17.3  | 15.5   | 18.83  | 16.9   | 17     | 19     |
| 32 QAM                            | 4H            | 21.8  | 17.33  | 22.5   | 18.7   | 20.5   | 21.5   |
| 64 QAM                            | 5B            | 203   | 22.5   | 25.5   | 20.8   | 23.8   | 23.5   |
| 128 QAM                           | 5B            | 25.3  | 25.84  | 28.17  | 24.1   | 26.7   | 27     |
| 256 QAM                           | 6B            | 28.6  | 29.5   | 32     | 27.6   | 29.9   | 30     |
| 28 MHz Channel                    |               |       |        |        | ·      | ·      |        |
| 4 QAM                             | 2             | 13.3  | 8.16   | 10.84  | 7.4    | 10.7   | 11     |
| 16 QAM                            | 4L            | 17.3  | 17.17  | 21     | 14.7   | 16.8   | 19     |
| 32 QAM                            | 4H            | 19.3  | 18.5   | 20.67  | 18.3   | 21.1   | 21     |
| 64 QAM                            | 5A/5B         | 20.3  | 21.83  | 22.83  | 22.5   | 23.7   | 24     |
| 128 QAM                           | 5A/5B         | 24.8  | 25.67  | 26.5   | 22     | 26.4   | 27     |
| 256 QAM                           | 6A/6B         | 28.6  | 28.17  | 30.5   | 27.6   | 29.8   | 30     |
| 56 MHz Channel                    |               |       |        |        |        |        |        |
| 4 QAM                             | 2             | 7.8   | 7.67   | 9      | 7.5    | 10.7   | 11     |
| 16 QAM                            | 4L            | 17.3  | 14.83  | 17.5   | 14.8   | 17.3   | 19     |
| 32 QAM                            | 4H            | 18.8  | 18.83  | 20.66  | 17.9   | 21     | 22     |
| 64 QAM                            | 5A/5B         | 19.8  | 22     | 23.17  | 20.5   | 23.7   | 25     |
| 128 QAM                           | 5A/5B         | 24.8  | 26     | 25.34  | 23.8   | 27     | 28     |
| 256 QAM                           | 6A/6B         | 28.6  | 26.5   | 27.67  | 27.5   | 29.1   | 31     |

# Co-channel interference (RSL degradation of 3 dB)

Table 4-24; C/I (dB) for BER≤10-6 - Co-channel interference (3 dB degradation)



| Modulation                        | Spectral eff. | 7 GHz  | 13 GHz | 15 GHz | 18 GHz | 23 GHz | 38 GHz |
|-----------------------------------|---------------|--------|--------|--------|--------|--------|--------|
| C/I (dB) for BER≤10 <sup>-6</sup> | ;             |        |        |        |        |        |        |
| 7 MHz Channel                     |               |        |        |        |        |        |        |
| 4 QAM                             | 2             | -18    | -19.83 | -19.4  | -19.1  | -15.4  | -15.5  |
| 16 QAM                            | 4L            | -15.7  | -16.83 | -15.25 | -17.4  | -13.4  | -13.5  |
| 32 QAM                            | 4H            | -15.7  | -16.17 | -16.5  | -17.6  | -11.9  | -12    |
| 64 QAM                            | 5B            | -14.8  | -15.83 | -15.75 | -17.2  | -10.4  | -12    |
| 128 QAM                           | 5B            | -11.3  | -13.34 | -12.41 | -17.1  | -10.2  | -11.5  |
| 14 MHz Channel                    |               |        |        |        | ·      |        |        |
| 4 QAM                             | 2             | -18.17 | -19.34 | -20.41 | -17.4  | -15.3  | -10.5  |
| 16 QAM                            | 4L            | -13.54 | -17.83 | -18.17 | -23.2  | -12.5  | -11.5  |
| 32 QAM                            | 4H            | -16.5  | -17    | -17.25 | -15.5  | -11.9  | -11    |
| 64 QAM                            | 5B            | -15.7  | -15.33 | -15.75 | -14.6  | -9.6   | -10    |
| 128 QAM                           | 5B            | -18.5  | -15    | -12.42 | -14.7  | -9.1   | -10    |
| 256 QAM                           | 6B            | -10.83 | -11.17 | -10.6  | -12.6  | -5.3   | -11    |
| 28 MHz Channel                    |               |        |        |        |        |        |        |
| 4 QAM                             | 2             | -20.33 | -19.5  | -21.7  | -17.7  | -15.6  | -12.5  |
| 16 QAM                            | 4L            | -17.83 | -17    | -19    | -17.1  | -12.6  | -10.5  |
| 32 QAM                            | 4H            | -17.17 | -17.33 | -18.75 | -17.4  | -11.9  | -10.5  |
| 64 QAM                            | 5A/5B         | -15.83 | -15.16 | -15.5  | -16.5  | -10.3  | -10    |
| 128 QAM                           | 5A/5B         | -12.66 | -13.16 | -16.6  | -16.7  | -9.6   | -10    |
| 256 QAM                           | 6A/6B         | -8     | -9.83  | -10.5  | -13.5  | -5.9   | -6     |
| 56 MHz Channel                    |               |        |        |        |        |        |        |
| 4 QAM                             | 2             | -22.67 | -23.34 | -26.5  | -28.1  | -17.1  | -16    |
| 16 QAM                            | 4L            | -12.64 | -20    | -18.1  | -25.9  | -15.6  | -14    |
| 32 QAM                            | 4H            | -12.34 | -18.66 | -15.8  | -24.2  | -14.8  | -14    |
| 64 QAM                            | 5A/5B         | -12.83 | -15.34 | -14.75 | -23.6  | -13.2  | -12.5  |
| 128 QAM                           | 5A/5B         | -12.16 | -12.34 | -13.3  | -17.2  | -9.3   | -11    |
| 256 QAM                           | 6A/6B         | -7     | -11.5  | -11.5  | -11.9  | -7.7   | -5.5   |

Table 4-25; C/I (dB) for BER≤10-6 – (1 dB degradation)

|         | Modulation                  | Spectral eff. | 7 GHz  | 13 GHz | 15 GHz | 18 GHz | 23 GHz | 38 GHz |
|---------|-----------------------------|---------------|--------|--------|--------|--------|--------|--------|
| C/I (dE | B) for BER≤10 <sup>-6</sup> |               |        |        |        |        |        |        |
| 7 MHz   | Channel                     |               |        |        |        |        |        |        |
|         | 4 QAM                       | 2             | -17.71 | -20    | -19.92 | -19.4  | -17.8  | -15    |
|         | 16 QAM                      | 4L            | -14.17 | -17.17 | -16.67 | -17.8  | -14.9  | -14    |
|         | 32 QAM                      | 4H            | -15.7  | -16.33 | -16.34 | -17.7  | -14.4  | -13    |
|         | 64 QAM                      | 5B            | -15    | -16.16 | -14.91 | -17.2  | -12.9  | -12.5  |
|         | 128 QAM                     | 5B            | -14.67 | -14.17 | -13.58 | -17.1  | -12.3  | -12.5  |
| 14 MH   | z Channel                   |               |        |        |        |        |        |        |
|         | 4 QAM                       | 2             | -18.5  | -19.66 | -19.75 | -17.3  | -17.6  | -13.5  |
|         | 16 QAM                      | 4L            | -17.17 | -17.5  | -17.4  | -16.2  | -15.1  | -11.5  |
|         | 32 QAM                      | 4H            | -18    | -17.33 | -17.92 | -15.6  | -14.3  | -11.5  |
|         | 64 QAM                      | 5B            | -16.16 | -16    | -15.83 | -14.7  | -11.6  | -10.5  |
|         | 128 QAM                     | 5B            | -18    | -15.83 | -13.42 | -14.6  | -11.6  | -10    |
|         | 256 QAM                     | 6B            | -11    | -11    | -10.75 | -13.9  | -9.6   | -11.5  |
| 28 MH   | z Channel                   |               |        |        |        |        | ·      |        |
|         | 4 QAM                       | 2             | -20.5  | -20    | -21.9  | -17.5  | -18.4  | -14    |
|         | 16 QAM                      | 4L            | -18    | -17    | -19.3  | -17.4  | -15.7  | -11    |
|         | 32 QAM                      | 4H            | -18.5  | -17.67 | -19.83 | -16.8  | -15.1  | -11.5  |
|         | 64 QAM                      | 5A/5B         | -15.83 | -15.5  | -18.34 | -16.6  | -13.1  | -11    |
|         | 128 QAM                     | 5A/5B         | -13.67 | -14    | -16.9  | -16.8  | -12.6  | -10.5  |
|         | 256 QAM                     | 6A/6B         | -10    | -9.84  | -10.34 | -12    | -12.1  | -9     |
| 56 MH   | z Channel                   |               |        |        |        | ·      | ·      |        |
|         | 4 QAM                       | 2             | -25    | -24.83 | -26.42 | -29.4  | -20.4  | -18    |
|         | 16 QAM                      | 4L            | -17.53 | -22.17 | -21.3  | -27.2  | -18.1  | -15    |
|         | 32 QAM                      | 4H            | -17.54 | -19.33 | -19.41 | -24.2  | -16.8  | -15    |
|         | 64 QAM                      | 5A/5B         | -15.67 | -15.33 | -16.67 | -21    | -17.4  | -14    |
|         | 128 QAM                     | 5A/5B         | -12.16 | -13.17 | -14    | -17.3  | -15.3  | -13    |
|         | 256 QAM                     | 6A/6B         | -10.57 | -11.67 | -11.8  | -12.2  | -14.4  | -9.5   |

# First Adjacent Channel interference (RSL degradation of 3 dB)



# 4.10. SUPORTED RADIO CHANNEL CONFIGURATIONS

Refer to the *WTM 3100 Tuning Guide* for the available frequency ranges (Tx Min Frequency ÷ Tx Max Frequency) per PN. Tx Frequency can be configured at the selected Nominal Capacity/Channel Spacing.

# 5. TECHNICAL SPECIFICATIONS - ACCESSORIES

# **5.1. POE INJECTORS**

A High Power Single Port PoE injector is used as a standard accessory. Two PoE injector types are available with 220 VAC and -48 VDC powering option.

### General

- Fully Compliant Detection, Disconnect and Voltage Control according to IEEE802.3af, 12.5K resistor detection.
- Diagnostic LEDs
- Broken Wire Detection
- Gigabit Compatible
- Single source 2 or 4 pairs Power Supply through the PoE injector-ODR Cable
- Detection and Power turn-on as per IEEE 802.3at ; Signature resistance 25 k $\Omega$

### **Standards Compliance**

- cUL/UL
- CE
- SAA
- C-Tick
- FCC Part 15 Class B
- EN55022 Class B



#### Figure 5-1; POE compliance logotypes

### Environmental

| Operation temp. range     | 0 to +40°C   |  |
|---------------------------|--------------|--|
| Non-operation temp. range | -25 to +65°C |  |
| Humidity Operation        | 5 to 90 %    |  |

### **Electrical and Mechanical specifications**

| Dimensions | 166 x 44 x 80 mm (L x H x W) |
|------------|------------------------------|
| Weight     | 0.4 kg                       |

55 AVIAT NETWORKS

| Input connector           | AC POE | IEC320 inlet 3 pin                                            |
|---------------------------|--------|---------------------------------------------------------------|
|                           | DC POE | Anytek OQ0355510000G                                          |
| Input Voltage range       | AC POE | 100 to 240 VAC, 47-63 Hz                                      |
|                           | DC POE | 36 to 72 VDC                                                  |
| Input current range       | AC POE | 2A (RMS) maximum for 90 VAC<br>1.2A (RMS) maximum for 240 VAC |
|                           | DC POE | 4.0A, 32 VDC at maximum load<br>2.0A, 72 VDC at maximum load  |
| Maximum output power 60 W |        | 60 W                                                          |
| Efficiency (typical)      | AC POE | 75 % @ maximum load, and 120 VAC 60<br>Hz                     |
|                           | DC POE | 85 % @ maximum load, and 48 VDC                               |

### **Isolation Test**

- Primary to Secondary: 4242 VDC for 1 minute 10 mA
- Primary to Field Ground: 2121 VDC for 1 minute
- Output to Field Ground: 2121 VDC

### Immunity

- ESD: EN61000-4-2. Level 3
- RS: EN61000-4-3. Level 2
- EFT: EN61000-4-4. Level 2
- Surge: EN61000-4-5. Level 3

### 5.2. ETHERNET CABLE (FROM ODR TO POE INJECTOR -ECD)

| Type of cable                            | Standard Ethernet twisted multipair cable, S-FTP 24 AWG Cat. 5E                   |  |
|------------------------------------------|-----------------------------------------------------------------------------------|--|
| Environmental                            | Temperature range from –33° C to +55° C<br>UV resistant, for outdoor application. |  |
| PoE injector-ODR Connectors              | RJ45 shielded                                                                     |  |
| Max. length                              | 100 m, according to the standard. This is total length from ODR to ECD.           |  |
| DC loop resistance of the cable per pair | < 25 Ω                                                                            |  |
| Transmission standards                   | 1000 Base T with PoE injector                                                     |  |
| Gross bit rate on the cable              | 125 MHz                                                                           |  |
| Max Cable attenuation on a pair          | 22 dB/100 m @ 100 MHz                                                             |  |
| Power Signals on the cable               | DC/DC voltage according to PoE injector                                           |  |
| Lightening protection                    | 6 kV 10/700 μs. CCITT K17, ITU-T K45 1kV 8/20μs. CE, EN6100-4-5                   |  |
| Table 5-1: PoE injector ODP Cablin       | a and Connection                                                                  |  |

Table 5-1; PoE injector-ODR Cabling and Connection

### 5.3. ANTENNA

The standard Aviat Networks antenna (Eclipse product family) is equipped with pole/tower mounting hardware. It enables the WTM 3100 ODR to be attached directly to the antenna using a Slip-Fit connector.



When installing antennas that exceed 1.8 m in diameter (six feet) or dual pole antennas, the ODR(s) must be remotely mounted and connected to the antenna with waveguides(s). Most antennas are Class 3 ETSI is approved with the exception of those made by Xian. These are class 2 and are generally unsuitable for Europe and the USA.

Applicable mounting options are:

- WTM 3100 ODR can be mounted directly to an Aviat Networks Slip-Fit antenna
- Dual WTM 3100 ODRs are mounted to a slip-fit coupler which is attached to the antenna
- Remotely mounted WTM 3100 ODR is connected via flexible waveguide cable to the antenna
- WTM 3100 ODRs are mounted remotely and connected via flexible waveguides to the dual polarization antenna
- The WTM 3100 ODRs are mounted directly to equal loss couplers and these are connected via waveguides to a dual polarization antenna

Typical antenna gains obtainable at mid band are reported in the Table 5-2. In case of use of a NON INTEGRATED antenna, the connections between the ODR and the external antenna must be compliant with Table 5-3.

| FREQUENCY | Antenna 20<br>cm Gain [dBi] | Antenna 30<br>cm Gain [dBi] | Antenna 60<br>cm Gain [dBi] | Antenna 80<br>cm Gain [dBi] | Antenna<br>120cm Gain<br>[dBi] |
|-----------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------------------------|
| 7 GHz     | 21,3                        | 25,0                        | 30,0                        | 33,5                        | 37,0                           |
| 13 GHz    | 25,7                        | 30,0                        | 35,6                        | 37,9                        | 41,8                           |
| 15 GHz    | 26,9                        | 30,5                        | 36,5                        | 39,0                        | 42,5                           |
| 18 GHz    | 28,9                        | 32,5                        | 38,5                        | 41,0                        | 44,5                           |
| 23 GHz    | 30,8                        | 34,0                        | 40,0                        | 42,5                        | 46,0                           |
| 38 GHz    | NA                          | 40,1                        | 45,2                        | NA                          | NA                             |

Table 5-2: Antenna Gain

| FREQUENCY | OUTPUT FLANGE<br>at radio unit | OUTPUT FLANGE<br>at flexible wave guide | WAVE GUIDE |
|-----------|--------------------------------|-----------------------------------------|------------|
| 7 GHz     | UDR84                          | PDR84                                   | WR112      |
| 13 GHz    | UBR120                         | PBR120                                  | WR75       |
| 15 GHz    | UBR140                         | PBR140                                  | WR62       |
| 18 GHz    | UBR220                         | PBR220                                  | WR42       |
| 23 GHz    | UBR220                         | PBR220                                  | WR42       |
| 38 GHz    | UBR320                         | PBR320                                  | WR28       |

Table 5-3: External Antenna Connection

### **ODR Mounting**

Antennas for direct mounting to the ODR are available in diameters from 0.3 m (1 ft) to 1.8 m (6 ft), depending on the frequency band. These antennas are high performance, low profile shielded types.

Antennas are supplied without the normal rectangular waveguide feed. Instead, there is a simple circular feed-point that connects the ODR directly to the WTM 3100 or to the coupler unit for 1+1 HSB configurations.

V or H polarization selection is done by rotating the ODR.

Antenna mounting collar is designed for use with industry-standard 115 mm OD (4.5 inch) pipe-mounts.



# 6. DOCUMENTATION AND SUPPORTING TOOLS

# 6.1. CUSTOMER DOCUMENTATION

Customer Documentation for the WTM 3100 product line is subdivided into the following documents:

### Product Description (PD) (260-668220-001)

Document contains WTM 3200 overview, applications, composition, performance, features, interfaces, functions and maintenance.

It contains the most important technical data, at certain paragraphs and when more details are available in another document, reference is provided.

### Technical Specifications ETSI (260-668223-001)

This is available in two forms. The short form datasheet contains main product features and main technical specification. The long form technical specification document contains all main technical details about WTM 3100, primarily in table format.

### WTM 3100 Tuning Guide (260-668224-001)

This is an MS Excel document and contains all available and supported WTM 3100 ODRs. All listed WTM 3100 ODRs are released in production.

It also contains information about supported frequency ranges, T-R spacing's and simplified figure that shows covered frequency band supported by each ODR.

### User Manual (260-668219-001)

Document contains instructions about mounting, connecting and commissioning the WTM 3100 product. Provides information on how to install, operate, monitor and maintain the WTM 3100 product using the ePortal operating terminal and ProVision element management system

In addition to Graphical User Interface (GUI) window descriptions and task instructions, the User Manual describes remedial actions for alarms.

### Release Notes (260-668222-001)

Information about WTM 3100 Software release, supported functionalities and known limitations.

### WTM 3100 Product Ordering Guide (260-668225-001)

A guide to assist sales staff and approved resellers when quoting the WTM 3100.

### Aviat Networks Best Practices Guide (280-200019-001)

This manual describes standard practices and procedures common to all Aviat Networks radio systems, including:

- Recommended safety standards
- Minimum standards to ensure reliable network operation
- Acceptable standards dictated by the Aviat Networks Warranty policy

It also provides a wealth of information on planning and installation practices, systems operation, testing, troubleshooting and technical background.

### ProVision NMS documentation (300-662025-001000)

To Integrate WTM 3100 into network OSS, refer to the Aviat Networks ProVision documentation.

### **6.2. RELATED WHITE PAPERS**

### **Calculated MTBF values**

AVIAT NETWORKS WTM 3100 RELIABILITY REPORT: MTBF calculations for WTM 3100 ODR, according to Telcordia SR-332/Bellcore TR-332 model.

### Pathloss files

Pathloss Version 4 files are available for all supported modulations and channel spacings.

This includes a TECHNICAL NOTE about WTM 3100 Path Loss Files.



# 7. MAINTENANCE

Key information regarding the maintenance activities is covered in this section. For more details, refer to the *WTM 3100 User Manual*.

### **Maintenance Policy**

The WTM 3100 system has been designed to operate with a minimum level of maintenance. This section describes recommended maintenance procedures.

### **Maintenance Tools and Spare Parts**

The Maintenance policy in this paragraph is based on maintenance tools and spare parts availability.

The main tool for maintenance is the ePortal which allows displaying alarms; system status, measurements and performances of the system.

If ProVision NMS is implemented and connected, it's possible to carry out activities remotely similar to those performed with ePortal.

Tools required for the system installation and maintenance activities, are described in detail in the WTM 3100 User Manual.

### **Spare Parts Policy**

The spare part policy is defined as follows:

- Replacement of the complete ODR
- Replacement of the PoE injector

In case of ODR failure, after replacement it is necessary to reconfigure the system with the previous station parameters using the ePortal.

It is important that the spare part units have exactly the same part number as replaceable units.

### **Spare Parts Quantity**

The total amount of spare parts depends from Customer Requirements and is influenced by the network size, MTBF and MTT-R values.

### Parts Replacement in Case of Faults

Aviat Networks procedures and operations to be followed in case some faulty part needs to be replaced.

# 8. GLOSSARY

| Abbreviations | Description                                          |
|---------------|------------------------------------------------------|
| ACM           | Adaptive Code Modulation Block                       |
| AGC           | Automatic Gain Control                               |
| AMC           | Adaptive Modulation Control                          |
| AMINTL        | Min Transmitted Power when ATPC enabled              |
| ANSI          | American National Standards Institute                |
| ARO           | After receipt of order                               |
| ART           | Air Recovery Timing                                  |
| ASTM          | American Society for Testing and Materials           |
| ATPC          | Automatic Transmit Power Control                     |
| AUX           | Auxiliary/Alarm I/O Card                             |
| BER           | Bit Error Rate                                       |
| CCDP          | Co-Channel Dual Polarization                         |
| ССМ           | Continuity Check Messages                            |
| CFR           | Code of Federal Regulations                          |
| CMINTL        | Min Calibrated Transmission Level                    |
| CoS           | Class of Service                                     |
| CW            | Continuous Waveform                                  |
| D/A, A/D      | Digital-to-Analog, Analog-to-Digital                 |
| DAC           | Data access card                                     |
| DC            | Direct current                                       |
| DMAXTL        | Dynamically Adjusted Max Transmitted Power           |
| DSCP          | Differentiated Services Code Point                   |
| DWRR          | Deficit weighted round-robin                         |
| E/NMS         | Element/Network Management System                    |
| ECD           | Ethernet Connected Device (e.g. Mobile Base-station) |
| ECN           | Engineering Change Notice                            |
| EEPROM        | Electrically Erasable Programmable Read-Only Memory  |
| EIPR          | European Intellectual Property Review                |
| EMC           | Electromagnetic compatibility                        |
| ePortal       | User device management portal                        |
| ES            | Errored Seconds                                      |
| ETSI          | European Telecommunications Standards Institute      |
| EXP           | Experimental bits                                    |
| FD            | Folded Dipole Antenna                                |
| FE            | Fast Ethernet                                        |
| FEC           | Forward Error Correction                             |
| FIFO          | First In, First Out                                  |
| FMEA          | Failure Mode and Effects Analysis                    |

62 AVIAT NETWORKS



| FPGAField-Programmable Gate ArrayGEGigabit EthernetGHzGigabit EthernetGHzGigabit EthernetHPTHigh Power ThresholdHSBHot Stand ByHSBYHot Stand byHTMLHyper Text Markup LanguageHTSHarmonized Tariff Schedule of the United StatesHTTPHyper text Transfer ProtocolIDUIndoor UnitIDUGEGigabit Ethernet enabled indoor unitINUIntelligent node unit (Eclipse)ITMNInstallation and Test ManualLEMLoopback MessageLCTLocal Craft TerminalLEDLight-emitting diodeLLC1Logical link controlLPTLow Power ThresholdLPRCLow Density Parity CheckMAXTLMax Transmitted PowerMUBMonitored Hot StandbyMIModulation IndexMIBManagement Information BaseMINTLMin Transmission LevelMPEMaximum Permissible ExposureMTRMean Time Between FailuresMTTRMean Time to RecoveryNEBSNetwork equipment-building systemNHSSNetwork regulement management systemNTPNetwork management systemNTPNetwork regulement systemMTGOutdoor adioODUOutdoor unitOSOperation systemNTPNetwork management systemNTPNetwork management systemNTAOver the airOUTTLTransmitted P |       |                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------|
| GHzGigahertzHPTHigh Power ThresholdHSBHot Stand ByHSBHot Stand ByHSBYHot StandbyHTTLHyper Text Markup LanguageHTSHarmonized Tariff Schedule of the United StatesHTTPHypertext Transfer ProtocolIDUIndoor UnitIDUGEGigabit Ethernet enabled indoor unitINUIntelligent node unit (Eclipse)ITTNInstallation and Test ManualLBMLoopback MessageLCTLocal Craft TerminalLEDLight-emitting diodeLLC1Logical link controlLPTLow Power ThresholdLPRCLow Density Parity CheckMAXTLMax Transmitted PowerMCUMicrocontrollerMHSBMonitored Hot StandbyMIModulation IndexMIBManagement Information BaseMINTLMin Transmission LevelMFEMean Time Between FailuresMTTRMean Time Between FailuresMTTRMean Time DetrocolODROutdoor RadioODUOutdoor RadioODUOutdoor unitOSOperation systemOTAOver the airOUTTLTransmitted Power when in manual or predefined PTx operation                                                                                                                                                                               | FPGA  | Field-Programmable Gate Array                                |
| HPTHigh Power ThresholdHSBHot Stand ByHSBYHot StandbyHTTMLHyper Text Markup LanguageHTTSHarmonized Tariff Schedule of the United StatesHTTPHypertext Transfer ProtocolIDUIndoor UnitIDUGEGigabit Ethernet enabled indoor unitINUIntelligent node unit (Eclipse)ITMNInstallation and Test ManualLBMLoopback MessageLCTLocal Craft TerminalLEDLight-emitting diodeLLC1Logical link controlLPTLow Power ThresholdLPRCLow Density Parity CheckMAXTLMax Transmitted PowerMCUMicrocontrollerMHSBMonitored Hot StandbyMIModulation IndexMIBManagement Information BaseMINTLMin Transmission LevelMPEMaximum Permissible ExposureMFSBNetwork equipment-building systemMTTRMean Time to RecoveryNEBSNetwork or Element management systemNNSNetwork management systemNTPNetwork management systemNTPNetwork Time ProtocolODUOutdoor unitOSOperation SystemOTAOver the airOUTTLTransmitted Power when in manual or predefined PTx operation                                                                                                    | GE    | Gigabit Ethernet                                             |
| HSBHot Stand ByHSSYHot StandbyHTMLHyper Text Markup LanguageHTSHarmonized Tariff Schedule of the United StatesHTTPHypertext Transfer ProtocolIDUIndoor UnitIDUGEGigabit Ethernet enabled indoor unitINUIntelligent node unit (Eclipse)ITMNInstallation and Test ManualLEDLögtabit Ethernet enabled indoor UnitLGTLocal Craft TerminalLEDLight-emitting diodeLLC1Logical link controlLPTLow Power ThresholdLPRCLow Density Parity CheckMAXTLMax Transmitted PowerMCUMicrocontrollerMHSBMonitored Hot StandbyMIModulation IndexMIBManagement Information BaseMINTLMin Transmission LevelMFEMaximum Permissible ExposureMFEMaainum Permissible ExposureMTRMean Time Between FailuresMTTRMean Time Between FailuresMTTRNetwork or Element management systemNKSNetwork or SystemNTPNetwork Rime ProtocolODROutdoor maidoODUOutdoor maidoODUOutdoor nuitOSOperation systemOTAOver the airOUTTLTransmitted Power when in manual or predefined PTx operation                                                                                | GHz   | Gigahertz                                                    |
| HSBYHot StandbyHTMLHyper Text Markup LanguageHTSHarmonized Tariff Schedule of the United StatesHTTPHypertext Transfer ProtocolIDUIndoor UnitIDUGEGigabit Ethernet enabled indoor unitINUIntelligent node unit (Eclipse)ITMNInstallation and Test ManualLBMLoopback MessageLCTLocal Craft TerminalLEDLight-emitting diodeLLC1Logical link controlLPTLow Power ThresholdLPRCLow Density Parity CheckMAXTLMax Transmitted PowerMCUMicrocontrollerMHSBMonitored Hot StandbyMIModulation IndexMIBManagement Information BaseMINTLMin Transmission LevelMPEMaximum Permissible ExposureMTBFMean Time to RecoveryMEBSNetwork equipment-building systemMTRMean Time to RecoveryMTRNetwork relement management systemNTPNetwork rangement systemNTPNetwork Time ProtocolODUOutdoor radioODUOutdoor radioODUOutdoor radioODUOutdoor radioODUOutdoor radioODUOutdoor radioOUTTLTransmitted Power when in manual or predefined PTx operation                                                                                                    | HPT   | High Power Threshold                                         |
| HTMLHyper Text Markup LanguageHTSHarmonized Tariff Schedule of the United StatesHTTPHypertext Transfer ProtocolIDUIndoor UnitIDUGEGigabit Ethernet enabled indoor unitINUIntelligent node unit (Eclipse)ITMNInstallation and Test ManualLBMLoopback MessageLCTLocal Craft TerminalLEDLight-emiting diodeLLC1Logical link controlLPTLow Power ThresholdLPRCLow Density Parity CheckMAXTLMax Transmitted PowerMCUMicrocontrollerMHSBMonitored Hot StandbyMIModulation IndexMIBManagement Information BaseMINTLMin Transmission LevelMFEMean Time to RecoveryMESNetwork equipment-building systemMTRMean Time to RecoveryNEBSNetwork or Element management systemNMSNetwork role lement management systemNTPNetwork Time ProtocolODUOutdoor radioODUOutdoor radioODUOutdoor radioODUOutdoor radioODUOutdoor radioODUOutdoor radioODUOutdoor radioODUOutdoor radioOUTTLTransmitted Power when in manual or predefined PTx operation                                                                                                     | HSB   | Hot Stand By                                                 |
| HTSHarmonized Tariff Schedule of the United StatesHTTPHypertext Transfer ProtocolIDUIndoor UnitIDUGEGigabit Ethernet enabled indoor unitINUIntelligent node unit (Eclipse)ITTMNInstallation and Test ManualLBMLoopback MessageLCTLocal Craft TerminalLEDLight-emitting diodeLLC1Logical link controlLPTLow Power ThresholdLPRCLow Dewer ThresholdLPRCLow Density Parity CheckMAXTLMax Transmitted PowerMCUMicrocontrollerMHSBMonitored Hot StandbyMIModulation IndexMIBManagement Information BaseMINTLMin Transmission LevelMPEMaximum Permissible ExposureMBFMean Time Between FailuresMTTRMean Time to RecoveryNEBSNetwork or Element management systemNFFNetwork or Element management systemMTRMean Time ProtocolODROutdoor unitOSOperation systemNTPNetwork rime ProtocolODUOutdoor unitOTAOver the airOUTTLTransmitted Power when in manual or predefined PTx operation                                                                                                                                                      | HSBY  | Hot Standby                                                  |
| HTTPHypertext Transfer ProtocolIDUIndoor UnitIDUGEGigabit Ethernet enabled indoor unitINUIntelligent node unit (Eclipse)ITMNInstallation and Test ManualLBMLoopback MessageLCTLocal Craft TerminalLEDLight-emitting diodeLLC1Logical link controlLPTLow Power ThresholdLPRCLow Density Parity CheckMAXTLMax Transmitted PowerMCUMicrocontrollerMHSBMonitored Hot StandbyMIModulation IndexMIBManagement Information BaseMINTLMin Transmission LevelMPEMaximum Permissible ExposureMPLSMulti-protocol labeling systemMSEMean Time Between FailuresMTTRMean Time to RecoveryNEBSNetwork or Element management systemNMSNetwork management systemMTRMean Time ProtocolODUOutdoor RadioODUOutdoor RadioODUOutdoor RadioOTAOver the airOUTTLTransmitted Power when in manual or predefined PTx operation                                                                                                                                                                                                                                 | HTML  | Hyper Text Markup Language                                   |
| IDUIndoor UnitIDUGEGigabit Ethernet enabled indoor unitINUIntelligent node unit (Eclipse)ITMNInstallation and Test ManualLBMLoopback MessageLCTLocal Craft TerminalLEDLight-emitting diodeLLC1Logical link controlLPTLow Power ThresholdLPRCLow Density Parity CheckMAXTLMax Transmitted PowerMCUMicrocontrollerMHSBMonitored Hot StandbyMIModulation IndexMIBManagement Information BaseMINTLMin Transmission LevelMPEMaximum Permissible ExposureMTBFMean Squared ErrorMTBFMean Time between FailuresMTTRNetwork or Element management systemNMSNetwork or Element management systemNTPNetwork anagement systemODUOutdoor RadioODUOutdoor InitOSOperation system                                                                                                                                                                                                                                                                                                                                                                  | HTS   | Harmonized Tariff Schedule of the United States              |
| IDUGEGigabit Ethernet enabled indoor unitINUIntelligent node unit (Eclipse)ITMNInstallation and Test ManualLBMLoopback MessageLCTLocal Craft TerminalLEDLight-emitting diodeLLC1Logical link controlLPTLow Power ThresholdLPRCLow Density Parity CheckMAXTLMax Transmitted PowerMCUMicrocontrollerMHSBMonitored Hot StandbyMIModulation IndexMIBManagement Information BaseMINTLMin Transmission LevelMPEMean Squared ErrorMTBFMean Time Between FailuresMTTRMean Time to RecoveryNTESNetwork wanagement systemNMSNetwork role RecoveryMTERMean Time ProtocolODROutdoor RadioODUOutdoor RadioODUOutdoor RadioODUOver the airOUTTLTransmitted Power when in manual or predefined PTx operation                                                                                                                                                                                                                                                                                                                                       | HTTP  | Hypertext Transfer Protocol                                  |
| INUIntelligent node unit (Eclipse)ITMNInstallation and Test ManualLBMLoopback MessageLCTLocal Craft TerminalLEDLight-emitting diodeLLC1Logical link controlLPTLow Power ThresholdLPRCLow Density Parity CheckMAXTLMax Transmitted PowerMCUMicrocontrollerMHSBMonitored Hot StandbyMIModulation IndexMIBManagement Information BaseMINTLMir Transmission LevelMPEMaximum Permissible ExposureMTRMean Squared ErrorMTRMean Time Between FailuresMTRMean Time to RecoveryNEBSNetwork or Element management systemNMSNetwork management systemNTPNetwork Time ProtocolODROutdoor unitOSOperation systemOTAOver the airOUTTLTransmitted Power when in manual or predefined PTx operation                                                                                                                                                                                                                                                                                                                                                 | IDU   | Indoor Unit                                                  |
| ITMNInstallation and Test ManualLBMLoopback MessageLCTLocal Craft TerminalLEDLight-emitting diodeLLC1Logical link controlLPTLow Power ThresholdLPRCLow Density Parity CheckMAXTLMax Transmitted PowerMCUMicrocontrollerMHSBMonitored Hot StandbyMIModulation IndexMIBManagement Information BaseMINTLMir Transmission LevelMPEMaximum Permissible ExposureMSEMean Squared ErrorMTBFMean Time Between FailuresMTTRMean Time to RecoveryNEBSNetwork or Element management systemNMSNetwork Time ProtocolODROutdoor unitOSOperation systemOTAOver the airOUTTLTransmitted Power when in manual or predefined PTx operation                                                                                                                                                                                                                                                                                                                                                                                                             | IDUGE | Gigabit Ethernet enabled indoor unit                         |
| LBMLoopback MessageLCTLocal Craft TerminalLEDLight-emitting diodeLLC1Logical link controlLPTLow Power ThresholdLPRCLow Density Parity CheckMAXTLMax Transmitted PowerMCUMicrocontrollerMHSBMonitored Hot StandbyMIModulation IndexMIBManagement Information BaseMINTLMin Transmistel ExposureMPEMaximum Permissible ExposureMBFMean Squared ErrorMTRMean Time to RecoveryMEBSNetwork equipment-building systemMTRMean Time to RecoveryNEBSNetwork management systemNMSNetwork management systemMTRModulation Index systemMTRMean Time to RecoveryMEBSNetwork relignment-building systemNMSNetwork relignment systemNMSNetwork management systemNTPNetwork Time ProtocolODROutdoor natiOSOperation systemOTAOver the airOUTTLTransmitted Power when in manual or predefined PTx operation                                                                                                                                                                                                                                            | INU   | Intelligent node unit (Eclipse)                              |
| LCTLocal Craft TerminalLEDLight-emitting diodeLLC1Logical link controlLPTLow Power ThresholdLPRCLow Density Parity CheckMAXTLMax Transmitted PowerMCUMicrocontrollerMHSBMonitored Hot StandbyMIModulation IndexMIBManagement Information BaseMINTLMir Transmistel ExposureMPEMaximum Permissible ExposureMBFMean Squared ErrorMTRMean Time to RecoveryNEBSNetwork equipment-building systemNFFNetwork ro Element management systemNMSNetwork management systemMTRMoor Element management systemMTRMoor Element management systemMTROutdoor RadioODUOutdoor unitOSOperation systemOTAOver the airOUTTLTransmitted Power when in manual or predefined PTx operation                                                                                                                                                                                                                                                                                                                                                                   | ITMN  | Installation and Test Manual                                 |
| LEDLight-emitting diodeLLC1Logical link controlLPTLow Power ThresholdLPRCLow Density Parity CheckMAXTLMax Transmitted PowerMCUMicrocontrollerMHSBMonitored Hot StandbyMIModulation IndexMIBManagement Information BaseMINTLMin Transmission LevelMPEMaximum Permissible ExposureMSEMean Squared ErrorMTBFMean Time Between FailuresMTTRMean Time to RecoveryNEBSNetwork or Element management systemNMSNetwork or RadioODUOutdoor RadioODUOutdoor radioODUOutdoor unitOSOperation systemOTAOver the airOUTTLTransmitted Power when in manual or predefined PTx operation                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LBM   | Loopback Message                                             |
| LLC1Logical link controlLPTLow Power ThresholdLPRCLow Density Parity CheckMAXTLMax Transmitted PowerMCUMicrocontrollerMHSBMonitored Hot StandbyMIModulation IndexMIBManagement Information BaseMINTLMin Transmission LevelMPEMaximum Permissible ExposureMSEMean Squared ErrorMTRMean Time Between FailuresMTTRMean Time to RecoveryNEBSNetwork or Element management systemNMSNetwork management systemNTPNetwork Time ProtocolODROutdoor RadioODUOutdoor naitOSOperation systemOTAOver the airOUTTLTransmitted Power when in manual or predefined PTx operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LCT   | Local Craft Terminal                                         |
| LPTLow Power ThresholdLPRCLow Density Parity CheckMAXTLMax Transmitted PowerMCUMicrocontrollerMHSBMonitored Hot StandbyMIModulation IndexMIBManagement Information BaseMINTLMin Transmission LevelMPEMaximum Permissible ExposureMPEMean Squared ErrorMTBFMean Time Between FailuresMTTRMean Time to RecoveryNEBSNetwork or Element management systemNMSNetwork management systemNTPNetwork Time ProtocolODROutdoor unitOSOperation systemOTAOver the airOUTTLTransmitted Power when in manual or predefined PTx operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LED   | Light-emitting diode                                         |
| LPRCLow Density Parity CheckMAXTLMax Transmitted PowerMCUMicrocontrollerMHSBMonitored Hot StandbyMIModulation IndexMIBManagement Information BaseMINTLMin Transmission LevelMPEMaximum Permissible ExposureMPEMaximum Permissible ExposureMSEMean Squared ErrorMTBFMean Time Between FailuresMTTRMean Time to RecoveryNEBSNetwork equipment-building systemN-EMSNetwork management systemNTPNetwork Time ProtocolODROutdoor RadioODUOutdoor unitOSOperation systemOTAOver the airOUTTLTransmitted Power when in manual or predefined PTx operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LLC1  | Logical link control                                         |
| MAXTLMax Transmitted PowerMCUMicrocontrollerMHSBMonitored Hot StandbyMIModulation IndexMIBManagement Information BaseMINTLMin Transmission LevelMPEMaximum Permissible ExposureMPLSMulti-protocol labeling systemMSEMean Squared ErrorMTBFMean Time Between FailuresMTTRMean Time to RecoveryNEBSNetwork equipment-building systemNMSNetwork r Element management systemNMSNetwork management systemNTPNetwork Time ProtocolODROutdoor RadioODUOutdoor unitOSOperation systemOTAOver the airOUTTLTransmitted Power when in manual or predefined PTx operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LPT   | Low Power Threshold                                          |
| MCUMicrocontrollerMHSBMonitored Hot StandbyMIModulation IndexMIBManagement Information BaseMINTLMin Transmission LevelMPEMaximum Permissible ExposureMPEMaximum Permissible ExposureMSEMean Squared ErrorMTBFMean Time Between FailuresMTTRMean Time to RecoveryNEBSNetwork equipment-building systemN-EMSNetwork or Element management systemNTPNetwork Time ProtocolODROutdoor RadioODUOutdoor unitOSOperation systemOTAOver the airOUTTLTransmitted Power when in manual or predefined PTx operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LPRC  | Low Density Parity Check                                     |
| MHSBMonitored Hot StandbyMIModulation IndexMIBManagement Information BaseMINTLMin Transmission LevelMPEMaximum Permissible ExposureMPEMaximum Permissible ExposureMPLSMulti-protocol labeling systemMSEMean Squared ErrorMTBFMean Time Between FailuresMTTRMean Time to RecoveryNEBSNetwork equipment-building systemN-EMSNetwork or Element management systemNTPNetwork Time ProtocolODROutdoor RadioODUOutdoor unitOSOperation systemOTAOver the airOUTTLTransmitted Power when in manual or predefined PTx operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MAXTL | Max Transmitted Power                                        |
| MIModulation IndexMIBManagement Information BaseMINTLMin Transmission LevelMPEMaximum Permissible ExposureMPEMaximum Permissible ExposureMPLSMulti-protocol labeling systemMSEMean Squared ErrorMTBFMean Time Between FailuresMTTRMean Time to RecoveryNEBSNetwork equipment-building systemN-EMSNetwork or Element management systemNTPNetwork Time ProtocolODROutdoor RadioODUOutdoor unitOSOperation systemOTAOver the airOUTTLTransmitted Power when in manual or predefined PTx operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MCU   | Microcontroller                                              |
| MIBManagement Information BaseMINTLMin Transmission LevelMPEMaximum Permissible ExposureMPLSMulti-protocol labeling systemMSEMean Squared ErrorMTBFMean Time Between FailuresMTTRMean Time to RecoveryNEBSNetwork equipment-building systemN-EMSNetwork or Element management systemNTPNetwork Time ProtocolODROutdoor RadioODUOutdoor unitOSOperation systemOTAOver the airOUTTLTransmitted Power when in manual or predefined PTx operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MHSB  | Monitored Hot Standby                                        |
| MINTLMin Transmission LevelMPEMaximum Permissible ExposureMPLSMulti-protocol labeling systemMSEMean Squared ErrorMTBFMean Time Between FailuresMTTRMean Time to RecoveryNEBSNetwork equipment-building systemN-EMSNetwork or Element management systemNMSNetwork management systemNTPNetwork Time ProtocolODROutdoor RadioODUOutdoor unitOSOperation systemOTAOver the airOUTTLTransmitted Power when in manual or predefined PTx operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | МІ    | Modulation Index                                             |
| MPEMaximum Permissible ExposureMPLSMulti-protocol labeling systemMSEMean Squared ErrorMTBFMean Time Between FailuresMTTRMean Time to RecoveryNEBSNetwork equipment-building systemN-EMSNetwork or Element management systemNMSNetwork management systemNTPNetwork Time ProtocolODROutdoor RadioODUOutdoor unitOSOperation systemOTAOver the airOUTTLTransmitted Power when in manual or predefined PTx operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MIB   | Management Information Base                                  |
| MPLSMulti-protocol labeling systemMSEMean Squared ErrorMTBFMean Time Between FailuresMTTRMean Time to RecoveryNEBSNetwork equipment-building systemN-EMSNetwork or Element management systemNMSNetwork management systemNTPNetwork Time ProtocolODROutdoor RadioODUOutdoor unitOSOperation systemOTAOver the airOUTTLTransmitted Power when in manual or predefined PTx operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MINTL | Min Transmission Level                                       |
| MSEMean Squared ErrorMTBFMean Time Between FailuresMTTRMean Time to RecoveryNEBSNetwork equipment-building systemN-EMSNetwork or Element management systemNMSNetwork management systemNTPNetwork Time ProtocolODROutdoor RadioODUOutdoor unitOSOperation systemOTAOver the airOUTTLTransmitted Power when in manual or predefined PTx operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MPE   | Maximum Permissible Exposure                                 |
| MTBFMean Time Between FailuresMTTRMean Time to RecoveryNEBSNetwork equipment-building systemN-EMSNetwork or Element management systemNMSNetwork management systemNTPNetwork Time ProtocolODROutdoor RadioODUOutdoor unitOSOperation systemOTAOver the airOUTTLTransmitted Power when in manual or predefined PTx operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MPLS  | Multi-protocol labeling system                               |
| MTTRMean Time to RecoveryNEBSNetwork equipment-building systemN-EMSNetwork or Element management systemNMSNetwork management systemNTPNetwork Time ProtocolODROutdoor RadioODUOutdoor unitOSOperation systemOTAOver the airOUTTLTransmitted Power when in manual or predefined PTx operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MSE   | Mean Squared Error                                           |
| NEBSNetwork equipment-building systemN-EMSNetwork or Element management systemNMSNetwork management systemNTPNetwork Time ProtocolODROutdoor RadioODUOutdoor unitOSOperation systemOTAOver the airOUTTLTransmitted Power when in manual or predefined PTx operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MTBF  | Mean Time Between Failures                                   |
| N-EMSNetwork or Element management systemNMSNetwork management systemNTPNetwork Time ProtocolODROutdoor RadioODUOutdoor unitOSOperation systemOTAOver the airOUTTLTransmitted Power when in manual or predefined PTx operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MTTR  | Mean Time to Recovery                                        |
| NMS       Network management system         NTP       Network Time Protocol         ODR       Outdoor Radio         ODU       Outdoor unit         OS       Operation system         OTA       Over the air         OUTTL       Transmitted Power when in manual or predefined PTx operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NEBS  | Network equipment-building system                            |
| NTP       Network Time Protocol         ODR       Outdoor Radio         ODU       Outdoor unit         OS       Operation system         OTA       Over the air         OUTTL       Transmitted Power when in manual or predefined PTx operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N-EMS | Network or Element management system                         |
| ODROutdoor RadioODUOutdoor unitOSOperation systemOTAOver the airOUTTLTransmitted Power when in manual or predefined PTx operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NMS   | Network management system                                    |
| ODU     Outdoor unit       OS     Operation system       OTA     Over the air       OUTTL     Transmitted Power when in manual or predefined PTx operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NTP   | Network Time Protocol                                        |
| OS     Operation system       OTA     Over the air       OUTTL     Transmitted Power when in manual or predefined PTx operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ODR   | Outdoor Radio                                                |
| OTA     Over the air       OUTTL     Transmitted Power when in manual or predefined PTx operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ODU   | Outdoor unit                                                 |
| OUTTL Transmitted Power when in manual or predefined PTx operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OS    | Operation system                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ΟΤΑ   | Over the air                                                 |
| PCBA Printed Circuit Board Assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OUTTL | Transmitted Power when in manual or predefined PTx operation |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | РСВА  | Printed Circuit Board Assembly                               |

| PCP          | Priority Code Point                                                 |
|--------------|---------------------------------------------------------------------|
| PDH          | Plesiochronous Digital Hierarchy                                    |
| PHY          | Physical layer                                                      |
| PM           | Performance Monitoring                                              |
| PoE          | Power over Ethernet                                                 |
| PoE injector | Power over Ethernet injector                                        |
| ProVision    | Aviat Networks ProVision E/NMS                                      |
| PSE          | Power Sourcing Equipment                                            |
| PTC          | Positive Temperature Coefficient Thermistor                         |
| QAM          | Quadrature amplitude modulation                                     |
| QoS          | Quality of Service                                                  |
| 4 QAM        | Quadrature Phase Shift Keying                                       |
| RAC          | Radio access card                                                   |
| RAM          | Random Access Memory                                                |
| REACH        | Registration, Evaluation, Authorization and Restriction of Chemical |
|              | substances                                                          |
| RF           | Radio Frequency                                                     |
| RoHS         | Restriction of Hazardous Substances Directive                       |
| RS-CC        | Recursive Systematic Convolutional Codes                            |
| RSSI         | Received signal strength indication                                 |
| RTPC         | Remote Transmit Power Control                                       |
| RU           | Rack unit                                                           |
| RX           | Receive                                                             |
| Rx/Tx        | Receive/Transmit                                                    |
| SES          | Severely Errored Seconds                                            |
| SFP          | Small Form-Factor Pluggable Transceiver                             |
| SGMII        | Serial Gigabit Media Independent Interface                          |
| SNMP         | Simple Network Management Protocol                                  |
| SSH          | Secure Shell                                                        |
| ТСР          | Transmission Control Protocol                                       |
| TDM          | Time division multiplex                                             |
| ТХ           | Transmit                                                            |
| тсхо         | Temperature Compensate X\'tal (crystal) Oscillator                  |
| UAS          | Unavailable Seconds Counter                                         |
| UDP          | User Datagram Protocol                                              |
| ULA          | Unidirectional Link Avoidance                                       |
| VLAN         | Virtual LAN                                                         |
| VLAN ID      | Virtual LAN Identification                                          |
| WEEE         | Waste Electrical and Electronic Equipment Directive                 |
| WRR          | Weighted Round Robin                                                |
| XPIC         | Cross Polarization Interference Cancellation                        |



260-668220-001

### WWW.AVIATNETWORKS.COM

Aviat, Aviat Networks, and Aviat logo are trademarks or registered trademarks of Aviat Networks, Inc.

© Aviat Networks, Inc. 2012. All Rights Reserved.

Data subject to change without notice.

